

z=0

AGN feedback and galaxy formation

Yohan Dubois Institut d'Astrophysique de Paris (IAP)

Horizon-AGN simulation (RAMSES code) http://horizon-simulation.org

Morphological transformations and AGN feedback

1) What SMBHs do for morphology

2) What morphology does for SMBHs

AGN feedback model: -Bondi accretion rate -Booth & Schaye 2009 boost -Eddington limited -Quasar (heating mode) -Radio mode (biconical jet)

Dubois et al, 2016

The origin of the stars

See also Oser+ 2010; Lackner+ 2012; Dubois+ 2013; Rodriguez-Gomez+ 2016 Lee & Yi, 2013 (SAM)

A few exemples of $2x10^{11}$ M_{sun} galaxies

Morphological transformations and AGN feedback

1) What SMBHs do for morphology

2) What morphology does for SMBHs

Puzzling observation fact

Reines & Volonteri, 2015

Does the SF clump destruction have any impact on BH growth?

Dubois, Volonteri, Silk et al., 2014

Cosmological zoom simulation

M_h=10¹² M_{sun} @ z=2 M_{DM,res}=10⁵ M_{sun} dx=10 pc

BH growth delayed by efficient SN feedback

Efficient SN feedback z=2.5

Dubois, Volonteri et al. 2015

1 kpc 1 kpc z=5.80 z=5.65 SHDA face-or 1 kpc 1 kpc z=5.80 z=5.65 z=5.65

edge-

Dubois, Volonteri et al, 2015

Efficient SN feedback delays bulge formation

Dubois, Volonteri et al, 2015

Dubois, Volonteri et al, 2015

Confirmed in a statistical sense

10 Mpc box with 80 pc spatial resolution Using pop III BH seeding

Habouzit, Volonteri, YD, sub.

<u>Results also confirmed in:</u> Bower et al, 2016 (EAGLE) Prieto, Escala, Volonteri, YD, 2017 (z=6 halos) Biernacki, Teyssier & Bleuler, arXiv (isolated disc simulations)

Quasar mode AGN do not destroy discs

Gabor & Bournaud, 2014

Inefficient momentum-driven winds (not RT simulations)

 M_{BH} =10⁸ M_{sun}

400

 $M_{\rm BH} = 10^8 \, {\rm h}^{-1} \, {\rm M}_{\odot}$

200 ENERGY-DRIVEN 10⁻² y [h⁻¹ ckpc] 10⁻³ [cm⁻³ 0 10-4 -200 10-5 ~ 30 Myr (z ~ 7.8 at t = 0 Myr) t ~ 60 Myr t ~\40 Myr 10-6 -400 10⁰ 400 $M_{BH} = 10^8 h^{-1} M_{\odot}$ 10⁻¹ 200 MOMENTUM-DRIVEN 10⁻² y [h⁻¹ ckpc] 10⁻³ 10⁻³ 10⁻⁴ M_{BH} =10⁸ M_{sun} dp/dt=L/c -200 **10**⁻⁵ t~160 Myr t ~ 200 Myr t~130 Myr 10-6 -400 400 10⁰ $M_{BH} = 10^9 h^{-1} M_{\odot}$ 10⁻¹ M_{BH} =10⁹ M_{sun} 200 MOMENTUM-DRIVEN 10⁻² 10⁻¹ 10⁻³ ^{10⁻³} ^{10⁻³} dp/dt=L/c y [h⁻¹ ckpc] $M_{\rm BH} = 10^8 \, {\rm h}^{-1} \, {\rm M}_{\odot}$ $(M_{BH}=10^8 M_{sun})$ -200 (Energy-driven) dp/dt=10xL/c) **10**⁻⁵ t ~ 30 Myr t ~ 60 Myr t~40 Myr 10⁻⁶ -400 -400 -200 0 -200 -400 -400 -200 0 -200 -400 -400 -200 0 -200 -400 x [h⁻¹ ckpc] $x [h^{-1} ckpc]$ $x [h^{-1} ckpc]$

Costa, Sijacki, Haehnelt, 2014

10⁰

10⁻¹

Radiation hydrodynamics

Uses moment method with M1 closure to solve radiative transfer in RAMSES
(Rosdahl et al, 2013, Rosdahl & Teyssier 2015)
Solving non-equilibrium evolution of ionisation fractions of H and He

•Radiation Pressure + diffusion of multi-scattering IR radiation included

 $\kappa_{\rm D,UV} = 1000 \, {\rm g \, cm^{-2}}$ •Dust opacities $\kappa_{\rm D,IR} = 10 \, {\rm g \, cm^{-2}}$

 $\kappa_{\rm D} = 0$ if T > 10^5 K

•Solar metallicity with all metals in dust content •Two AGN luminosities 10⁴⁶ erg/s & 10⁴³ erg/s

•Reduced speed of light approximation c_{red} =0.2 c (Gnedin & Abel 2001)

Sazonov+ 2004

Big Caveat:
No gravity
No cooling
No SF

Shining a quasar in a multiphase medium

Log Normal pdf for gas density Power spectrum k^{-5/3} (and different cloud size) ICs from Wagner & Bicknell (2011)

Galaxy mass is 2.10¹⁰ M_{sun} With 100% gas (no DM, no stars) Resolution is 5 pc in clouds

Mechanical advantage

$$\dot{p} = (1 + \eta \tau_{\rm IR}) \frac{L}{c}$$

500 rays are cast to measure $\, au_{\mathrm{IR}} \,$

Bieri, YD, Rosdahl+, 2017

Mechanical advantage considering different groups

The uncertainties in dust-gas coupling

- Dust grains receive IR momentum kicks
- This momentum has to be transferred to the gas to regulate the galaxy gas content
- Two problems:
 - 1) Gas particles scatter on dust grains
 - \longrightarrow dynamical friction and momentum transfer

$$t_{\text{stop}} \simeq \frac{\tilde{\rho}_{\text{D}} a_{\text{D}}}{\rho_{\text{gas}} c_{\text{s}}} \qquad t_{\text{stop}} \simeq 1 \,\text{Myr} \qquad \begin{array}{l} \tilde{\rho}_{\text{D}} = 3 \,\text{g cm}^{-3} \\ a_{\text{D}} = 0.1 \,\mu\text{m} \\ \rho_{\text{gas}} = 1 \,\text{cm}^{-3} \\ c_{\text{s}} = 3 \,\text{km s}^{-1} \\ t_{\text{cross}} \simeq 0.1 \,\text{Myr} \qquad u_{\text{D}} = 100 \,\text{km s}^{-1} \\ r_{\text{cloud}} = 10 \,\text{pc} \end{array}$$

2) Dust can be destroyed at high temperatures
 (T>10⁶ K) by thermal sputtering, and in SN explosions
 (inertial sputtering)

2

Hopkins & Lee, 2015

Including dust processing (work in progress)

- Dust destruction through thermal sputtering and SN shock destruction
- Dust growth at low temperatures
- Dust is a passive scalar (i.e. dust is glued to gas motions)

Summary

- AGN feedback controls the formation of ellipticals by freezing the morphological transformation due to mergers
- BH growth at high redshift:
 - SN feedback can suppress BH growth in high-redshift low-mass galaxies M_{bulge} <10⁹ M_{sun} (or V_{esc} <270 km/s)
 - Burst of AGN activity triggered by wet mergers associated with bulge formation
- Quasar mode with photons only:
 - Can drive winds because of IR multi-scattering
 - Though fewer scatters than theoretically inferred
 - Destroys the disc
 - Need to be confirmed in more realistic set-up