The next quasars and massive galaxies frontier:

The pluetides simulation

Tiziana DiMatteo (CMU)

Yu Feng (Berkeley), Dacen Waters(CMU), Rupert Croft (CMU) Simeon Bird (CMU), Steve Wilkins (Sussex), Ananth Tenneti (CMU) Nick Battaglia (Princeton), Mark Straka (NCSA)

http://bluetides-project.org

100 MILLION LIGHT YEARS

Z > 7 Observations The first 800 million years

a few (tens) of compact, clumpy irregular galaxies

One quasar

Z > 7

room for discovery Age of the Universe (Myr) 500 400 600 300 10⁶ Cumulative (> z) Galaxies (2200 deg²) mag < 26.75 (WFIRST-2.4 5σ) mag < 26 (WFIRST-2.4 10 σ) 10⁵ optimistic: dM*/dz = 0.36 pessimistic: $dM^*/dz = 1.05$ mag < 26: lensed 10^{4} mag < 26: field Current candidates (HST+SST) 1000 100 10 1 12 13 15 10 11 14 8 9 Redshift z

$\angle > 7$ **Predictions:** The first 800 million years http://bluetides-project.org/

MassiveBlackI simulation

MassiveBlackI (DiMatteo et al. 2012)

Black holes grow to 10⁹Msun by z=7-6

MassiveBlackII (Khandai et al. 2015)

MassiveBlackII simulation

100 MILLION LIGHT YEARS

Simulations reproduce statistics of galaxy formation

Theoretical predictions lacking at z=7+ **simulations have either:** insufficient resolution or too small volumes for massive objects/high density regions

Theoretical predictions lacking at z=7+ **simulations have either:** insufficient resolution or too small volumes for massive objects/high density regions

BlueTides Simulation:

0.7 million cores on NCSA BlueWaters

Goals:

Technology Path Finder for future hydro simulationPredictions for high-redshift surveys

714 Mpc on the side
200 pc resolution at z=9
2x7040³ (0.7 trillion) particles
Star formation/ AGN model compatible with Illustris

50 times bigger volume with highest resolution

BlueTides Simulation: **Technology**

Current MP-Gadget: 22,000 lines much leaner code base flatter, low redundancy code for better sustainability/future developments.

BlueTides Simulation: Technology

Walltime per step

Technology Path-Finder:

- From P-Gadget to MP-Gadget
- 81000 MPI ranks, 8 OpenMP threads per rank
- Large, distributed FFT: 10,000 mesh on 81000 ranks
- Efficient thread parallism up to 32 threads per rank

Spinoffs and Open source contributions:

- bigfile : hierachical snapshot format
- MP-sort : practical parallel sorting
- sharedmem : parallel data analysis

- PFFT : large-scale distributed FFT

BlueTides Simulation: Technology

- Exposed data to avoid container overhead
- Splicing
- Plain text meta data
- Increased threading effciency (several threads interfere)
- Replaced critical sections
 with spinlocks

Long range force calculation (PM): New solver E.g. 8 processes: P_0 **Idle Processes** P_1 n₀ Ρ n_1 n_2 nı n_2 n_0 FFTW/P-Gadget3 PFFT/MP-Gadget Figure from M.Pippig 2013

Blue Tides: N= 10000 slabs on 81000 MPI ranks

Pencil beam domain decomposition

8 x speed-up

Open Source: Added new Array-execution interface and python binding to PFFT (http://github.com/mpip/pfft)

BlueTides Simulation: Science

Physics modelling in BlueTides

- Hydrodynamics (pSPH)
- Primodial cooling
- Multi-phase medium star-formation
- SN wind feedback
- H2 molecule fraction
- AGN feedback
- Metal enrichment and cooling
- Non-uniform UV background calibrated from rad. Hydro sims (Battaglia+13)

Science of high redshift galaxy

- a statistical sample of high redshift galaxies, accessible only via uniform simulations
- reionization
- morphology
- mock surveys
- high redshift AGNs
-

BlueTides 400 x volume of HUDF

Galaxy Luminosity Function in BlueTides consistent with Hubble Legacy Fields

Feng et al., 2015a

Example I: z=8, Milky Way(Mass) galaxies are disks!

Feng, TDM et al., 2015

Example I: z=8, Milky Way(Mass) galaxies are disks!

WFIRST should detect ~ 8000 Milky Way mass disks at z=7-8

Views of Gaseous disk

 $100~{
m Kpc/h}$

Feng et al. 2015

z=8 Milky Way (Massive) galaxies are disks! But small faint galaxies are irregular

Bluetides small galaxies

Feng et al., 2015b

The sizes of galaxies in BlueTides are consistent with HST observations --> 'massive' disks in bright

galaxies are compact rotationally supported

Feng et al., 2015a

Example II: Z=11, GN-z11 cosmic distance record is in Bluetides.

Example III: First quasars beyond z=7

Example III: First quasars beyond z=7

Most massive BHs at z=8, M ~ $10^8 M_{sun}$

Fastest growing, massive black holes are not in disky galaxies!

The environment of the most massive BH: compact, spheroidal host galaxy with strong radial inflows

Massive BHs reside in isolated overdensities in supercompact spheroidal hosts

tidal tensor $T_{ij}(x) =$

Large tidal field: Large filaments, Accretion perp. to t1, /coherent ang. momentum

 $T_{ij}(\mathbf{x}) = \frac{\partial^2 \phi}{\partial x_i \partial x_j},$ weak tidal field: Thin filaments radial motions along t1, cold accretion

spheroid

 $M_{BH} = 4 \times 10^{8} M_{sun}$

Large tidal field: →discs

→ massive BHs
 in spheroids

TDM et al. 17

→ massive BHs in spheroids

Not correlated to density

TDM et al. 17

The descendants of the most black hole at z=2 is not amongst the most massive DM Halo --0

M_{halo} for most massive BH at z=2.5 < 8 times than most massive halo (BH halo is 500th)

The next frontier: JWST, WFIRST

Predictions for JWST

The end of the dark ages is bright!

AGN LF

HLS 2200 sq degrees

First quasars up to at z=13-14

Bulk of black hole mass function $>10^6 M_{sun}$

Quasars, beyond z>7 are about 2 mag fainter than their hosts apart from handful of very bright AGN

Waters, DM+, 16

WFIRST galaxies, bias ~ 10-15

BlueTides and Re-ionization history of the Universe

Galaxies can reionize the universe for high escape photon fractions. But AGNs can contribute (very?) significantly

Summary:

New large volume high res BlueTides Simulation predictions

for the next frontier of high-z surveys (WFIRST, JWST)

- statistical properties of BH and galaxy populations
- probe physics/origin of first black holes and galaxies

