# Multidimensional upwind methods <br> on unstructured grids 

Sijme-Jan Paardekooper


THE ROYAL SOCIETY

## What interests me...

- Planet formation
- Disc-planet interactions
- Disc hydrodynamics


Baruteau et al. 2014

## My usual tool...

- Roe solver, 2nd order (flux limiter) Roe (1981), Eulderink \& Mellema (1995), Paardekooper \& Mellema (2006)
- Dimensionally split/unsplit Leveque (2001)
- Source terms: stationary extrapolation
Eulderink \& Mellema (1995)
- Rectangular mesh in cylindrical coordinates



## What frustrated me I

- Planet formation in close binaries
- Disc reaction to companion
- Gas disc eccentricity critical for planetesimal evolution



## What frustrated me I

- How eccentric does the disc get?
- Depends on flux limiter...
- Superbee more in line with e.g. FARGO, but minmod is converged



## What frustrated me II

- Vortex migration in discs
- Vortices can trap solids: building sites for planets?
e.g. Barge \& Sommeria (1995)
- Vortices emit density waves
- Angular momentum transport leads to migration

${ }^{x}$ Paardekooper et al. (2010)


## What frustrated me II

- How fast does a vortex migrate?
- Vortex dissipates through numerical diffusion
- Need crazy resolution


Paardekooper et al. (2010)

## ASTRIX

## What frustrated me III

- Off-the-shelf AMR is difficult
- Unperturbed disc usually has

$$
F_{1}+F_{2} \neq F_{3}
$$

- Error in angular momentum flux



## Test problem

- 2D isentropic vortex Yee et al. (1999)
- Stationary solution to inviscid equations
- Numerical solution for $t \rightarrow \infty$ : no vortex....



## Stationary solutions

- In 1D, a related issue arises when integrating sources:

$$
\frac{\partial q}{\partial t}+a \frac{\partial q}{\partial x}=-2 x(q-Q)
$$

- Small perturbations around a stationary state
- Well-balanced schemes (stationary extrapolation) e.g. Eulderink \& Mellema (1995), Bale et al. (2002)


## Stationary 2D solutions

- What can be done in 2 D ?
- Quite a few options, but to stay close to my expertise:
- Enter Multidimensional Upwind methods
e.g. Deconinck et al. (1993), van der Weide (1998), Abgrall (2001)


## Residual distribution

- Consider a conservation law $\frac{\partial \mathbf{W}}{\partial t}+\nabla \cdot \mathbf{F}=0 \quad$ on a triangulation $\mathcal{T}$
- Define the residual of a triangle as $\phi=\int_{T} \nabla \cdot \mathbf{F}$
- Distribute the residual over the nodes of triangle


## Residual distribution

- No residual: no evolution
- Ideas developed for linear advection
- For suitable linearisation, apply to nonlinear CLs



## Residual distribution

- For P1 linear elements (i.e. triangles in 2D), Roe's linearisation works
Deconinck et al. (1993)
- Combined with multidimensional upwinding: 2D Roe solver analog



## Upwinding

- How to distribute residual?
- Draw information from the proper places
- In case of linear advection: not send anything to node a



## Distribution schemes

- Other design criteria:
- Monotonicity (shocks)
- Linearity preserving
- Godunov: can't do both


ASTRIX

## ASTRIX

- AStrophysical fluid dynamics on TRIangular eXtreme grids
- GPU implementation of explicit 2D RD for AFD
Ricchiuto \& Abgrall (2010)
- Open source on GitHub https://github.com/SijmeJan/Astrix


## Vortex problem

- 2D isentropic vortex
- Stationary solution to inviscid equations
- Numerical solution for $t \rightarrow \infty$ : no vortex....



## Vortex problem

- 2D isentropic vortex
- Compare Roe solver to Astrix
- $\mathrm{L}_{1}$ density error


ASTRIX

## Riemann problem



## Riemann problem


. ${ }^{+}$Queen Mary
ASTRIX

## GPU implementation

- Nvidia CUDA
- Unstructured grids: difficult memory access patterns
- Less of a problem for modern GPUs
- Grid generation most difficult


ASTRIX

## GPU implementation

- CPU: Intel Xeon 2 GHz , GPU: Tesla K20m
- Speedup**: 100x for grid generation, 250x for hydro
- Limited by low computeintensity kernels



## GPU implementation

- Computing the residual: speedup of 500x
- Distributing: 40x



## Conclusions

- ASTRIX: a GPU implementation of a multidimensional upwind method on an unstructured grid
- Outperforms Roe solver in many cases
- Open source on GitHub: https://github.com/SijmeJan/Astrix


## Future

- Adaptive resolution
- Cylindrical coordinates
- 3D / self-gravity / radiative transfer




## Table Of Contents

Welcome to Astrix! Installation
Running Astrix
Creating a new setup Output and Visualisation Class overview

## Welcome to Astrix!

Astrix (AStrophysical fluid dynamics on TRlangular eXtreme grids) is a CUDA/C++ implementation of a two-dimensional residual distribution scheme aimed at tackling problems in astrophysical fluid dynamics.

## Contents:

- Welcome to Astrix
- Installation
- Installing CUDA
- Installing Astrix
- Running Astrix
- Command line options
- Test problems
- Creating a new setup
- Output and Visualisation
- Class overview
- Simulation
- SimulationParameter
- Device
- Mesh
- MeshParameter
- Connectivity
- Delaunay
- Refine
- Morton
- Predicates
- Array


## Indices and tables

- Index
- Search Page

Astrix 1.0 documentation *
https://github.com/SijmeJan/Astrix

