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What interests me…

• Planet formation

• Disc-planet interactions

• Disc hydrodynamics
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Fig. 1.— Relative perturbation of the surface density of a gaseous
protoplanetary disc perturbed by a 5 Earth-mass planet located at
x = rp and y = 0. The planet induces a one-armed spiral density
wave – the wake – that propagates throughout the disc, and density
perturbations confined in the planet’s horseshoe region. Typical
gas trajectories relative to the planet are shown with white curves
and arrows in the bottom panel.

and temperature T (⌃ / r�↵, T / r��), and the torque is
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where q is the planet-to-star mass ratio, h = H/r is the
aspect ratio and quantities with subscript p refer to the loca-
tion of the planet. Note that in general we expect ↵,� > 0,
i.e. both surface density and temperature decrease outward.
For reasonable values of ↵, the wave torque on the planet is
negative: it decreases the orbital angular momentum of the
planet, and thus its semi-major axis (the planet being on a
circular orbit), leading to inward migration. The linear ap-
proximation remains valid as long as q ⌧ h3 (Korycansky
and Papaloizou, 1996). For a disc around a Solar mass star
with h = 0.05 this means that the planet mass needs to be
much smaller than 40M�.

The factor � in Eq. (1) is due to the difference in sound
speed between isothermal and adiabatic discs (Baruteau
and Masset, 2008a). For discs that can cool efficiently, we
expect the isothermal result to be valid (� ! 1), while for
discs that can not cool efficiently, the adiabatic result should
hold. It is possible to define an effective � that depends
on the thermal diffusion coefficient so that the isothermal
regime can be connected smoothly to the adiabatic regime
(Paardekooper et al., 2011).

A generalized expression for the Lindblad torque has
been derived by Masset (2011) for 2D discs where the den-
sity and temperature profiles near the planet are not power
laws, like at opacity transitions or near cavities. This gen-
eralized expression agrees well with Eq. (1) for power-law
discs. We stress that there is to date no general expression
for the wave torque in 3D non-isothermal discs. The analyt-
ics is involved (Tanaka et al., 2002; D’Angelo and Lubow,
2010) and it is difficult to measure the wave torque inde-
pendently from the corotation torque in 3D numerical sim-
ulations of planet-disc interactions.

The above discussion neglected possible effects of
self-gravity. Pierens and Huré (2005) showed that in a
self-gravitating disc, Lindblad resonances get shifted to-
wards the planet, thereby making the wave torque stronger.
This was confirmed numerically by Baruteau and Masset
(2008b). The impact of a magnetic field in the disc and
of possibly related MHD turbulence will be considered in
Section 2.1.4.

The normalisation factor �0 sets a time scale for Type I
migration of planets on circular orbits:
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where M? denotes the mass of the central star. Assuming a
typical gas surface density of 2000 (rp/1AU)�3/2

g cm

�2,
M? = M�, and h = 0.05, the migration time scale in years
at 1 Astronomical Unit (AU) is given approximately by 1/q.
This means that an Earth-mass planet at 1 AU would mi-
grate inward on a time scale of ⇠ 3 ⇥ 10

5 years, while the
time scale for Neptune would only be ⇠ 2⇥ 10

4 years. All
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My usual tool…
• Roe solver, 2nd order (flux limiter)

• Dimensionally split/unsplit

• Source terms: stationary 
extrapolation

• Rectangular mesh in cylindrical 
coordinates
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Roe (1981), Eulderink & Mellema (1995), Paardekooper & Mellema (2006)

Leveque (2001)

Eulderink & Mellema (1995)



What frustrated me I

• Planet formation in close binaries

• Disc reaction to companion

• Gas disc eccentricity critical for 
planetesimal evolution

STRIX
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Figure 5. Planetesimal evolution in an axisymmetric gas disc, with !0 ∝ r−7/4 for the same binary parameters as in Fig. 4 (see also the top left panel). Top
left: longitude of periastron distribution after 5680 yr. Top right: eccentricity distribution after 5680 yr, with the black line indicating the forced eccentricity ef.
Bottom left: distribution of encounter velocities for three different impactor-target planetesimal pairs: two corresponding to equal-sized impacting objects and
the third one to a 1 km impactor hitting a 5 km target. Also shown is the limiting maximum ⟨dv⟩ for accreting encounters between 1 and 5 km bodies (dotted
line). Bottom right: encounter velocities at 1 au as a function of time for the same impactor-target pairs.
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Figure 6. Surface density of the gas disc, with !0 ∝ r−7/4 after 50 binary orbits (≈1600 yr), for the same binary parameters as in Fig. 4. Left-hand panel:
two-dimensional distribution of log10!. The binary companion is at apoastron, at (x, y) = (−13, 0). Right-hand panel: azimuthally averaged surface density.
The density scale is arbitrary, for comparison the initial condition is shown.

C⃝ 2008 The Authors. Journal compilation C⃝ 2008 RAS, MNRAS 386, 973–988

Paardekooper et al. (2008)



What frustrated me I
• How eccentric does the disc get?

• Depends on flux limiter…

• Superbee more in line with e.g. 
FARGO, but minmod is 
converged 
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Figure 8. Evolution of the mean disc eccentricity and longitude of periatron,
for the wide binary case qb = 0.234, eb = 0.3 and ab = 20 au, with !0 ∝
r−1/2, using two different flux limiters.

5.2 Planetesimal evolution

5.2.1 Quiet disc case

We first consider the quiet disc case, for which the situation should
a priori be the closest to the non-evolving axisymmetric case.

Fig. 9 shows the evolution of planetesimal orbital parameters and
encounter velocities for the same tight binary parameters as in Fig. 5.
Comparing the top panels of Figs 5 and 9 we see that, as expected,
the largest differences occur in the inner regions of the disc, typically
within ∼0.8 au, where gas drag effects are the most important. The
1-km planetesimals approach the gas eccentricity towards the inner
boundary, as expected. Interestingly, the 5-km bodies show a large
jump in longitude of periastron around r = 0.7 au, accompanied
by a drop in eccentricity. From the top left panel of Fig. 9, we see
that this happens where the longitude of periastron of the gas disc
amounts to π /2. Around this location, depending on the value of Z,
the denominator of equation (27) will approach zero, causing a large
jump in ϖ . For the 5-km planetesimals, Z ≈ 3 at this location, which

causes a drop in eccentricity (see equation 26). This is not true for
the 1 km planetesimals, and therefore there is a large eccentricity
difference around r = 0.7 au.

In terms of encounter velocities, these different behaviours of 1
and 5 km bodies in the innermost regions logically translate into
higher $v than in the axisymmetric case (see the bottom left panel
of Figs 5 and 9). At 1 au, the equilibrium encounter velocities are
approximately a factor of 2 higher than for the case of a circular gas
disc. However, in the outer disc, beyond ∼1 au, differences with the
axisymmetric case are much smaller. Although the gas eccentricity
is higher in these regions, the gas density is not high enough to
significantly affect the behaviour of km-sized planetesimals. Beyond
r = 1.4 au, the dynamical evolution of the planetesimal population
becomes indistinguishable from the circular gas disc case.

We now turn our attention to binary parameters that match those
of γ Ceph: qb = 0.234, ab = 20 au and eb = 0.3. From Fig. 7, we
see that the gas disc eccentricity is very small, eg < 0.02 almost
everywhere. In the top panels of Fig. 10 we show the distribution
of longitude of periastron and eccentricity after 104 yr, when the
system has reached a steady state. We find that in the whole r !
0.8 au region, the equilibrium ⟨$v⟩ for collisions between 1 and
5 km objects is !200 m s−1. This is still high enough to correspond
to eroding impacts for all tested collision outcome prescriptions of
Thébault et al. (2006) (see bottom left panel of Fig. 10). Direct com-
parison with Fig. 5 is here difficult, because the binary parameters
are different. We thus performed an additional axisymmetric gas
disc test simulation which showed that the encounter velocities are
the same, within 10 per cent, as for the present quiet state run. This
is an indication that the spiral waves, that do extend all the way in,
are indeed of minor importance regarding impact velocities. The
circular gas disc case is then a relatively good approximation.

5.2.2 Excited disc case

In Fig. 11, we show the results for the excited disc state, for the
γ Cephei like binary. It is immediately clear that, even for this wide
binary case, the planetesimals react rather violently to the large
eccentricity of the gas disc. Inside 1 au, the 1 km planetesimals are
dragged along with the gas and end up on highly eccentric orbits
matching that of the gas. The 5 km planetesimals follow the same
trend, but are more loosely coupled to the gas streamlines, and their
eccentricities never match that of the gas. For the periastra, however,
we observe a quasi-perfect alignment with that of the gas for both
planetesimal sizes. Note that this happens rather abruptly where
ϖ g ≈ 3π/2, which makes |tan(ϖ g)| very large. From equation (31),
we see that in this case, for which we indeed have eg ≫ ef, we expect
all planetesimals to align with the gas, independently of Z. Outside
1 au, 1 km planetesimals start to decouple from the gas, while the
bigger bodies do so already at ∼0.7 au. In the whole 1 " r " 3 au
region, differences between the equilibrium eccentricities for both
sizes are very large, culminating at ∼2 au, where e1 km ≈ 2e5 km.

The differences in E between the two particle sizes in the planet-
forming region around 1 au lead to very high encounter velocities,
exceeding 500 m s−1 almost everywhere (bottom panel of Fig. 11).
Note that due to the precession of the disc, Eg is time dependent, as
appears clearly from the oscillations in Fig. 8. However, this preces-
sion time-scale is shorter than the time it takes for the planetesimals
to settle into their equilibrium distribution. Therefore, the planetes-
imals will feel an average gas eccentricity and eventually settle into
a steady eccentricity and ⟨$v⟩ distribution. Also, the disc at 1 au
does not really participate in the precession, possibly due to the fact
that it is close to the inner boundary (see also below). This is also
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What frustrated me II
• Vortex migration in discs

• Vortices can trap solids: building 
sites for planets?

• Vortices emit density waves

• Angular momentum transport 
leads to migration

STRIX

148 PAARDEKOOPER, LESUR, & PAPALOIZOU Vol. 725

-3

-2

-1

0

-1

0

1

 y
 

-0.10

-0.05

0.00

0.05

-1 0 1
 x 

-1

0

1

 y
 

Figure 1. Relative perturbation of vortensity (top) and density (bottom) after
10 orbits at r = 1 for an isothermal disk with H0 = 0.1r0, α = 3/2, and
an initial velocity perturbation of 0.5cs over a circular region of radius H0/2
around r = 1,ϕ = π .

deal with vortex asymmetries in Section 5.4; here, we just note
that for α = 3/2, the vortex is symmetric to a high degree. The
resulting migration of the vortex is shown in Figure 2.

Indeed the vortex migrates inward. Results are shown for
three resolutions in Figure 2. The lowest resolution has 16 cells
per scale height, radially, at r0. In other words, the vortex is
resolved by approximately 8 cells only, in the radial direction.
In this case, the vortex weakens through numerical diffusion,
which starts to slow down the migration rate after 10 orbits.
Doubling the resolution pushes this time toward 20 orbits, and
doubling it again gives a steady migration rate for at least
40 orbits. At early times, the migration rate is similar for all
resolutions and we conclude that this migration rate is converged
with respect to numerical resolution. It results in a migration
timescale of r0/|ṙ| ≈ 2000Ω−1

0 or 300 orbits at r = r0. It is
clear that for this disk, vortex migration is an important process
to consider. Additional runs that included viscosity, with the
kinematic viscosity ν parameterized using the α-prescription,
ν = αvcsH , indicated that the numerical dissipation of these
vortices roughly correspond to αv = 10−4, 10−5 and 10−6,
respectively, for the low-, medium-, and high-resolution cases
shown in Figure 2.
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Figure 2. Time evolution of the radial location of the vortex, for three different
resolutions. Disk and vortex parameters are the same as in Figure 1.

4.2. Wave Action

Density waves propagate inward and outward away from the
vortex. Provided the vortex is not too strong, we expect the waves
to be in the linear regime close to the vortex, becoming nonlinear
at larger distances where shocks are formed (e.g., Goodman &
Rafikov 2001) and their amplitude reduces. While in the linear
regime, the total rate of flow of angular momentum across a
radial location that is associated with the waves, or equivalently
the wave action, is conserved. When the nonlinear regime
is entered and dissipation occurs, the wave action decreases.
Angular momentum is advected inward in the radial direction
at a rate given by

A = 2πr2⟨Σvrvϕ⟩, (4)

where the angle brackets denote an azimuthal average. Because
there is no net mass flow associated with linear waves, the az-
imuthal velocity perturbation alone may be used in Equation (4)
in this case. We remark that, by making use of the linearized
equations governing the waves is possible to write Equation (4)
in a different form. The waves have a pattern speed Ωvort which
is also the angular velocity of the vortex. Thus for the perturba-
tions associated with them, we have

Ωvort
∂

∂ϕ
= ∂

∂t
. (5)

Accordingly, the perturbed azimuthal component of the equation
of motion gives

(Ω − Ωvort)
∂vϕ

∂ϕ
+

κ2

2Ω
vr = − c2

s

rΣ
∂Σ′

∂ϕ
, (6)

where Σ′ is the surface density perturbation. Noting that to linear
order, the Lagrangian displacement ξr satisfies

vr = (Ω − Ωvort)
∂ξr

∂ϕ
, (7)

Paardekooper et al. (2010)

e.g. Barge & Sommeria (1995)



What frustrated me II
• How fast does a vortex 

migrate?

• Vortex dissipates through 
numerical diffusion

• Need crazy resolution
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Figure 1. Relative perturbation of vortensity (top) and density (bottom) after
10 orbits at r = 1 for an isothermal disk with H0 = 0.1r0, α = 3/2, and
an initial velocity perturbation of 0.5cs over a circular region of radius H0/2
around r = 1,ϕ = π .

deal with vortex asymmetries in Section 5.4; here, we just note
that for α = 3/2, the vortex is symmetric to a high degree. The
resulting migration of the vortex is shown in Figure 2.

Indeed the vortex migrates inward. Results are shown for
three resolutions in Figure 2. The lowest resolution has 16 cells
per scale height, radially, at r0. In other words, the vortex is
resolved by approximately 8 cells only, in the radial direction.
In this case, the vortex weakens through numerical diffusion,
which starts to slow down the migration rate after 10 orbits.
Doubling the resolution pushes this time toward 20 orbits, and
doubling it again gives a steady migration rate for at least
40 orbits. At early times, the migration rate is similar for all
resolutions and we conclude that this migration rate is converged
with respect to numerical resolution. It results in a migration
timescale of r0/|ṙ| ≈ 2000Ω−1

0 or 300 orbits at r = r0. It is
clear that for this disk, vortex migration is an important process
to consider. Additional runs that included viscosity, with the
kinematic viscosity ν parameterized using the α-prescription,
ν = αvcsH , indicated that the numerical dissipation of these
vortices roughly correspond to αv = 10−4, 10−5 and 10−6,
respectively, for the low-, medium-, and high-resolution cases
shown in Figure 2.
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Figure 2. Time evolution of the radial location of the vortex, for three different
resolutions. Disk and vortex parameters are the same as in Figure 1.

4.2. Wave Action

Density waves propagate inward and outward away from the
vortex. Provided the vortex is not too strong, we expect the waves
to be in the linear regime close to the vortex, becoming nonlinear
at larger distances where shocks are formed (e.g., Goodman &
Rafikov 2001) and their amplitude reduces. While in the linear
regime, the total rate of flow of angular momentum across a
radial location that is associated with the waves, or equivalently
the wave action, is conserved. When the nonlinear regime
is entered and dissipation occurs, the wave action decreases.
Angular momentum is advected inward in the radial direction
at a rate given by

A = 2πr2⟨Σvrvϕ⟩, (4)

where the angle brackets denote an azimuthal average. Because
there is no net mass flow associated with linear waves, the az-
imuthal velocity perturbation alone may be used in Equation (4)
in this case. We remark that, by making use of the linearized
equations governing the waves is possible to write Equation (4)
in a different form. The waves have a pattern speed Ωvort which
is also the angular velocity of the vortex. Thus for the perturba-
tions associated with them, we have

Ωvort
∂

∂ϕ
= ∂

∂t
. (5)

Accordingly, the perturbed azimuthal component of the equation
of motion gives

(Ω − Ωvort)
∂vϕ

∂ϕ
+

κ2

2Ω
vr = − c2

s

rΣ
∂Σ′

∂ϕ
, (6)

where Σ′ is the surface density perturbation. Noting that to linear
order, the Lagrangian displacement ξr satisfies

vr = (Ω − Ωvort)
∂ξr

∂ϕ
, (7)
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What frustrated me III

• Off-the-shelf AMR is difficult

• Unperturbed disc usually has

• Error in angular momentum flux
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Test problem
• 2D isentropic vortex

• Stationary solution to 
inviscid equations 

• Numerical solution        
for                : no vortex….

STRIX

t ! 1

Yee et al. (1999)



Stationary solutions
• In 1D, a related issue arises when integrating sources:

• Small perturbations around a stationary state 

• Well-balanced schemes (stationary extrapolation)

STRIX
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e.g. Eulderink & Mellema (1995), Bale et al. (2002)



Stationary 2D solutions

• What can be done in 2D?

• Quite a few options, but to stay close to my expertise:

• Enter Multidimensional Upwind methods

STRIX

e.g. Deconinck et al. (1993), van der Weide (1998), Abgrall (2001)



Residual distribution

• Consider a conservation law                                   on a 
triangulation 

• Define the residual of a triangle as 

• Distribute the residual over the nodes of triangle
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Residual distribution
• No residual: no evolution

• Ideas developed for linear 
advection

• For suitable linearisation, 
apply to nonlinear CLs
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Residual distribution
• For P1 linear elements (i.e. 

triangles in 2D), Roe’s 
linearisation works

• Combined with 
multidimensional upwinding: 
2D Roe solver analog 

STRIX

Deconinck et al. (1993)



Upwinding
• How to distribute residual? 

• Draw information from the 
proper places

• In case of linear advection: 
not send anything to node a
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Distribution schemes
• Other design criteria:

• Monotonicity (shocks)

• Linearity preserving 

• Godunov: can’t do both

STRIX

�T

a



ASTRIX
• AStrophysical fluid dynamics on 

TRIangular eXtreme grids 

• GPU implementation of explicit 
2D RD for AFD

• Open source on GitHub

STRIX

Ricchiuto & Abgrall (2010)

https://github.com/SijmeJan/Astrix

https://github.com/SijmeJan/Astrix


Vortex problem
• 2D isentropic vortex

• Stationary solution to 
inviscid equations 

• Numerical solution        
for                : no vortex….

STRIX
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Vortex problem

• 2D isentropic vortex

• Compare Roe solver to 
Astrix

• L1 density error

STRIX



Riemann problem

STRIX



Riemann problem
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GPU implementation
• Nvidia CUDA

• Unstructured grids: difficult 
memory access patterns

• Less of a problem for modern GPUs

• Grid generation most difficult

STRIX



GPU implementation
• CPU: Intel Xeon 2 GHz, 

GPU: Tesla K20m

• Speedup**: 100x for grid 
generation, 250x for hydro

• Limited by low compute-
intensity kernels

STRIX



GPU implementation

• Computing the residual: 
speedup of 500x

• Distributing: 40x

STRIX
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a



Conclusions
• ASTRIX: a GPU implementation of a 

multidimensional upwind method on 
an unstructured grid

• Outperforms Roe solver in many cases

• Open source on GitHub:

STRIX

https://github.com/SijmeJan/Astrix
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Future

• Adaptive resolution

• Cylindrical coordinates

• 3D/ self-gravity / 
radiative transfer

STRIX



Multidimensional            
upwind  methods
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on unstructured grids
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