

AstroDavos 2017

New challenges in computational astrophysics

Organisation

Many thanks to Pedro R. Capelo, Joanna Drazkowska, Valentin Perret, Alireza Rahmati, Clement Surville, Judit Szulagyi, Sebastian Trujillo-Gomez and Suzanne Wilde

							0.00	Monday	Tuesday	Wednes	Thursday	Friday
							9.00	Codes		Rad Tran.		N Body
Monday	Tuesday	Wednes	Thursday	Friday	Sat, 18.	Sun, 19.	1	Methods	SKI	Reioniz.	SKI	
0	O	0	O	, O	0			Stadel		Stone		TBD
-3°C	-2°C	3°C	3°C	1*0	-3°C	-4°C	12.00					
-5°C	-5°C	-110	-1"0	5'0		<1cm	12.00		Codes		Galaxies	
0°C	0°C	7°C	7°C	3°C	2°C	-2°C		SKI	Methods	SKI	Cosmo.	SKI
-	-	-		-	-	<1 cm			Teyssier		Mayer	
5%	5%	0%	896	20%			16.00					
1,180m	1,4 3 0m	2,440m	2,190m	1,390m	640m	820m	10.00	Planets	Stars	AFTER	Galaxies	
10h	10h	10h	10h	10h	10h	-			ISM	SKI	Cosmo.	TRAVEL
								Baraffe	Wadsley		Di Matteo	
							19:00					

Accuracy of large scale structure simulations

EUCLID: a space mission to map the universe

BAO, RSD and WL over 15,000 deg² 50 million galaxies with redshifts 1.5 billion sources with shapes, 10 slices BAO Source plane z₂ Source plane z₁ RSD 10-3 10-4 \$(t+1)C_{1}(2n) 10-5 $\Omega_{=}=0.30$ 10-8

101

102

103

e.

104

105

Cosmological simulations: computing requirements

Mock galaxy catalogues: one simulation every year with 10T particles. Galaxy population on the light cone with HOD/AM/SAM techniques with lensing maps.

Resources: 2 million node-hours (with GPU)

The Euclid Flagship Simulation

1.0 Klypin, Prada 2017 0.9 1.00.8 k' (hMpc⁻¹] 0.40.3 8 0.2 0.2 0.1 0.2 0.6 0.8 1.0 k (hMpc⁻¹) 0.0

Emulators: 50 such simulations (one per cosmological parameter set)

Coyote: Heitmann et al. 2014, Mira-Titan; Heitmann et al. 2016

Covariance matrices: 3000 simulations with 8B particles every year.

Resources: 2 million node-hours (with GPU)

Baryonic effects and galaxy formation simulations

Genel et al, 2014

Dubois et al. 2016

Schaye et al. 2014, McCarthy 2017

New physical ingredients in galaxy formation

Small-scale turbulent dynamo at early time (fast)

Large-scale dynamo at late time (slow)

Dynamical effects?

Photo-ionising and photodissociating radiation

Infrared radiation and dust

Dynamical effects ?

Rosdahl et al. 2015

New star formation recipe

Semenov, Gnedin, Kravtsov 2016

TURBULENT STAR FORMATION: CONNECTING THE DOTS (VALENTIN PERRET)

 ρ >1.0 cm⁻³ ϵ =1%

we

multi-ff KM Federrath & Klessen 2012

13

TURBULENT STAR FORMATION: CONNECTING THE DOTS (VALENTIN PERRET)

Interstellar medium physics

The SILCC project:

Random, Peak and Clustered SN driving completely change the ISM structure and the outflows properties.

Walch et al. 2015, Peters et al. 2015, Girichidis et al. 2016, Gatto et al. 2017

Simulation of the birth and death of a star cluster (Gavagnin et al. 2017)

Initial conditions: fully developed turbulence in a spherical cloud of mass 20'000 solar masses and radius 5 pc.

- Maximum spatial resolution 0.02 pc
- Minimum spatial resolution 500 AU
- Mass resolution 0.003 solar masses
- 3 models with only UV radiation (strong, weak and none)
- 1 model with only IR radiation
- Sink particle algorithm based on the clump finder with virial criterion.
- Accretion rate based on Bondi model.
- Direct gravity solver between sinks and between sinks and gas.

Carving though the codes: AstroDavos'17

 10^{2}

 10°

 10^{2}

 10°

10

 10^{1}

The role of feedback in shaping the star cluster

Arches

NGC 3603

Carving though the codes: AstroDavos'17

The star cluster final dynamical state

Carving though the codes: AstroDavos'17

Summary

- High-precision large-scale cosmological simulations are required for present and future galaxy surveys (mocks, emulators, covariances)
- Baryonic effects and galaxy formation theory are about to move into predictive mode
- New physical models (radiation, MHD) and new subgrid recipes are being developed.
- Towards coupling galaxy formation with ISM physics and star cluster formation?
- Towards a new generation of codes ?