

Numerical Simulations on ISM Dynamics and Star Formation

Robi Banerjee Hamburger Sternwarte

based on work by: Bastian Körtgen (HS), Dandiel Seifried (Cologne) co-workers: Ralph Pudritz (McMaster), Enrique Vazquez-Semadeni (UNAM, Mexico)

ISM Dynamics & Star Formation

multi scale and multi physics process (gravity, thermodynamics, turbulence, radiation, feedback, ...)

C. Burrows (ST Sci), J. Hester (AZ State U.), J. Morse (ST Sci), NASA

Magnetic Fields in the ISM

RIGHT ASCENSION (J2000)

FLASH: Numerical Modelling

- AMR (various geometries) MHD / nonideal MHD D.Lee (2013), D.Duffin et al. (2008) Selfgravity (Multi-Grid, BH-Tree) P.Ricker (2008), R. Wunsch (2009), G.Lukat & R.B (2015) Radiation transfer *E.-J.Rijkhorst* (2006), *T.Peters et al.* (2010), *L.Buntemeyer et al.* (2016), *M.Klassen* et al. (2016) Chemistry / Dust physics / KROME (T. Grassi, S. Bovino, et al.) M.Micic, S.Glover et al. (2010), T.Grassi et al. (2014) Sink particles Ch. Federrath et al. (2010) Sub-grid feedback (SNe, Winds, Outflows) B.Körtgen et al. (2015), Ch.Federrath et al. (2014), A.Gatto et al. (2017) Support of hardware acceleration (GPU, KNL)
 - G.Lukat & R.B. (2015)

FLASH: Numerical Modelling

- AMR (various geometries) MHD / nonideal MHD
 - D.Lee (2013), D.Duffin et al. (2008)
 - Selfgravity (Multi-Grid, BH-Tree)

see also RAMSES, ENZO, Gadget, Arepo, ATHENA, PHANTOM, ...

- P.Ricker (2008), R. Wunsch (2009), G.Lukat & R.B (2015) PHANTO
- Radiation transfer
- E.-J.Rijkhorst (2006), T.Peters et al. (2010), L.Buntemeyer et al. (2016), M.Klassen et al. (2016) Chemistry / Dust physics / KROME (T. Grassi, S.Bovino, et al.)
- M.Micic, S.Glover et al. (2010), T.Grassi et al. (2014)
- Sink particles
- Ch. Federrath et al. (2010)
- Sub-grid feedback (SN, Winds, Outflows)
- B.Körtgen et al. (2015), Ch. Federrath et al. (2014), A.Gatto et al. (2017)
 - Support of hardware acceleration (GPU, KNL)
 - G.Lukat & R.B. (2015)

Formation of Molecular Clouds

dynamical MC / GMC formation out of the WNM atomic media (e.g. Blitz et al. ,2007, PPV)

Formation of Molecular Clouds

Formation of dense, cold clouds out of the warm medium through thermal instability (Field 1965)

see also Vazquez-Semadeni et al. 2007, 2010

Formation of Molecular Clouds

the weakly magnetized $(B_x = 1 \mu G)$ case

0.00 Myr	0.00 Myr
Boxsize 80.0 pc	Boxsize 80.0 pc
edge-on view	face-on view

Formation of Molecular Clouds

main properties of MCs:

- highly patchy and clumpy
- high fraction of substructure
- cold dense molecular clumps coexist with warm atomic gas
- not a well bounded entity
- dynamical evolution (different star formation modes: from low mass to high mass SF?)

Magnetic Fields in the ISM

jee II

RIGHT ASCENSION (J2000)

Magnetic Fields in the ISM

- stronger magnetic fields in dense regions
 - \implies B gets compressed due to flux-freezing:

 $\Phi = \mathbf{A} \cdot \mathbf{B} = \text{const.}$

Impact of Magnetic Fields

magnetic flux is frozen into the plasma: mass-to-flux ratio:

$$\mu \equiv \left(\frac{M}{\Phi}\right) = \text{self-gravity / magnetic energy}$$
(cf. thermal Jeans mass)
$$\implies \mu = \frac{\Sigma}{B} \implies B \propto N$$

critical value for collapse:

 $\mu_{\rm crit} = 0.13/\sqrt{G}$

spherical structure Mouschovias & Spitzer 1976

$$\mu_{\rm crit} = \frac{1}{2\pi\sqrt{G}} \approx 0.16/\sqrt{G}$$

uniform disc Nakano & Nakamura 1978

Magnetic Fields in the ISM

• field strength B : important for star formation \implies mass-to-flux ratio: $\mu \propto \Sigma/B$ (Σ : column density)

Impact of Magnetic Fields on MCs

critical mass-to-flux ratio: $\mu_{\rm crit} = 0.13/\sqrt{G}$

 \implies time-scale for colliding flows:

$$t_{\rm crit} \approx 100 \,{\rm Myr} \,\left(\frac{B}{10\,\mu{\rm G}}\right) \,\left(\frac{n}{1\,{\rm cm}^{-3}}\right)^{-1} \,\left(\frac{v_{\rm flow}}{10\,{\rm km}~{
m sec}^{-1}}\right)^{-1}$$

²⁵⁶ pc

112 pc

256 pc

SF from Magnetised Medium

Solutions?

- flux loss by:
 - Ambipolar Diffusion (Mestel & Spitzer 1956, Shu 1987, Mouschovias 1987)
 - \implies old AD-mediated star formation picture
 - Turbulence + AD (e.g. Heitsch et al. 2004)
 - Turbulent reconnection (Lazarian & Vishniac 1999)
 - Ohmic resistivity (e.g. Dapp & Basu 2010, Krasnopolsky et al. 2010)

• Super-Alfvenic turbulence:

(e.g. Padoan et al. 1999, Mac Low & Klessen 2004, Ballesteros-Paredes 2007) \implies no need for flux loss:

clouds assumed to be supercritical

see also Vazquez-Semadeni et al. 2007, 2010

Model parameter:

- $n = 1 \text{ cm}^{-3}$
- $r = 32 \dots 64 \text{ pc}$
 - $\implies M_{\rm inf} = 2.3 \times 10^4 {\rm M}_{\odot}$
 - $\implies N \approx 7 \times 10^{20} \text{ cm}^{-2}$
- $v_{inf} = 14 \text{ km/sec}$

+ turbulence:
v_{turb} = 0.2 ... 12 km/sec
+ ambipolar diffusion

• $B_x = 1 \dots 5 \mu G$ $\implies \mu/\mu_{crit} = 1.1 (B/3\mu G)^{-1}$ $\implies t_{crit} \approx 15 Myr (B/3\mu G)$

influence of magnetic fields

0.00 Myr	0.00 Myr
Boxsize 80.0 pc	Boxsize 80.0 pc
$B = 3\mu G$	$B = 4\mu G$

influence of ambipolar diffusion

ideal case $B = 4\mu G$ with ambipolar diffusion

results from head-on colliding flows with different field strengths

B. Körtgen, RB, MNRAS (2015)

Simulations of oblique flows

B. Körtgen, RB, MNRAS (2015)

Simulations of oblique flows

Carving through the Codes, Davos Feb. 14, 2017, Robi Banerjee 22

Simulations of oblique flows

results from oblique flows with different field strengths at $\phi=60^\circ$

B. Körtgen, RB, MNRAS (2015)

Global Galactic Simulations

B. Körtgen, et al., preliminary work

does Mestel's accumulation idea work?

Global Galactic Disc Simulations

with toroidal magnetic field B_{ϕ}

B. Körtgen, et al., preliminary work

Protostellar Discs

Protoplanetary Disks Orion Nebula

HST · WFPC2

PRC95-45b · ST Scl OPO · November 20, 1995 M. J. McCaughrean (MPIA), C. R. O'Dell (Rice University), NASA

- ⇒ discs necessary for disc winds / outflows
- observed magnetic fields indicate $\mu < 5$

Hennebelle & Teyssier 2008, ...

- very efficient magnetic braking
- \implies **no** disc formation with smooth initial conditions

suggested solutions to the magnetic braking catastrophe:

- Ambipolar diffusion (Mellon & Li 2009, Li et al. 2011)
- Turbulent reconnection (Santos-Lima et al. 2012)
- Ohmic resistivity (e.g. Dapp & Basu 2010, Krasnopolsky et al. 2010)
- Misaligned configuration (Hennebelle & Ciardi 2009, Joos et al. 2012)

- Non-ideal MHD and reconnection active only at small scales/high density
- \implies not effective enough to reduce magnetic braking

 \Rightarrow Li, Krasnopolsky & Shang 2011: "The problem of catastrophic magnetic braking that prevents disk formation in dense cores magnetized to realistic levels remains unresolved"

suggested solutions to the magnetic braking catastrophe:

- Ambipolar diffusion (Mellon & Li 2009, Li et al. 2011)
- Turbulent reconnection (Santos-Lima et al. 2012)
- Ohmic resistivity (e.g. Dapp & Basu 2010, Krasnopolsky et al. 2010)
- Misaligned configuration (Hennebelle & Ciardi 2009, Joos et al. 2012)

 \Rightarrow what about **turbulence** ?

Collapse of Turbulent Cloud Cores

Seifried, et al. 2013

Run	$m_{\rm core}$ (M _{\odot})	r _{core} (pc)	μ	Rotation	$\Omega (10^{-13} \text{ s}^{-1})$	$\beta_{ m turb}$	Turbulence seed	р	M _{rms}	t _{sim} (kyr)
2.6-NoRot-M2	2.6	0.0485	2.6	No	0	0.087	А	5/3	0.74	15
2.6-Rot-M2	2.6	0.0485	2.6	Yes	2.20	0.087	Α	5/3	0.74	15
2.6-NoRot-M100	100	0.125	2.6	No	0	0.084	Α	5/3	2.5	15
2.6-Rot-M100	100	0.125	2.6	Yes	3.16	0.084	Α	5/3	2.5	15
2.6-Rot-M100-B	100	0.125	2.6	Yes	3.16	0.084	В	5/3	2.5	15
2.6-Rot-M100-C	100	0.125	2.6	Yes	3.16	0.084	С	5/3	2.5	15
2.6-Rot-M100-p2	100	0.125	2.6	Yes	3.16	0.084	Α	2	2.5	15
2.6-NoRot-M300	300	0.125	2.6	No	0	0.12	Α	5/3	5.0	10
2.6-Rot-M1000	1000	0.375	2.6	Yes	1.90	0.081	Α	5/3	5.4	10

- low + high mass cores
- strong magnetic field
- with/without global rotation
- sub-/supersonic turbulence
 = velocity/density fluctuations
- resolution: 1.2 AU

Seifried, RB, Pudritz, Klessen 2012

 \implies discs "reappear"

 \implies no flux loss

Conclusion

ISM dynamics & Star Formation

- multi-scale + multi-physics challenge
- single ingredient/idealised studies can be misleading

 but: numerical experiments are necessary to probe the underlying physics
 (predictive power?)

