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Introduction

– What are high order methods?
– Solution error e of a smooth solution ∝ O(hk ), k > 2 [Persson2012].
– E.g: High order reconstruction in Finite Volume methods

(ENO/WENO), Finite element methods (FEM)

– Why are they appealing?
– Higher fidelity predictions in computational methods
– High-order gives superior performance for equal resolution
– Schemes can be designed to exploit computational resources
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Motivation

Density profile at T=0
N = 2562.

Protoplanetary disk evolution.
Modeled by 2-D inviscid Euler equa-
tion + gravity source term.
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Motivation

Density profile, 1 rotation
N = 2562

Balance law:

∂tU +∇ · F (U) = S(U) (1)

where

U =
[
ρ, ρvx , ρvy , ε

]T
F (U) =


ρvx ρvy

ρv2
x + p ρvxvy
ρvxvy ρv2

y + p
vx(ε+ p) vy (ε+ p)



S(U) =


0

−ρ∂xφ
−ρ∂yφ

−(ρu∂xφ+ ρv∂xφ)
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Motivation

Density profile, 2 rotations
N = 2562

Looking at our system of PDEs:

∂tU +∇ · F (U) = S(U)

We can improve the quality of the so-
lution by:

– More accurate description of U;

– For steady states, fulfill the
flux-source balance
∇ · F (U) = S(U).
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Improving accuracy of U

General idea: We look for a weak solution to (1) U ∈ L∞loc(R2 × [0,+∞[)4,
a locally bounded measurable function.
We further assume that U0 ∈ L∞loc(R2)4, meaning can be either continuous
or discontinuous.
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Improving accuracy of U

A simple example on approximating functions in 1-D.
Let us discretize R =

⋃
Ij , Ij = [xi , xi+1[.

1st order Finite Volume Scheme: un+1
i = un

i − ∆t
∆x

(F (un
i+1/2)− F (un

i−1/2)).
F (un

i+1/2) ≈ F̂ (a, b) a suitable numerical flux.
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Improving accuracy of U
Discontinuous Galerkin method[2]

We look for uh ∈ V h
k := {uh ∈ L1

loc(R) ∩ BV (R), u |hI j∈ Pk(Ij)∀Ij} s.t.
∀vh ∈ V h

k :∫
Ij

vh(x)∂tu
hdx + [vh(x)f̂ (u(x , t))]

xj+1/2
xj−1/2 −

∫
Ij

∂xv
hf (uh)dx = 0
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Improving accuracy of U

L2-error of density after 8 boundary crossings.
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What if solution is not smooth?

– High order approximation leads to oscillations (Gibbs phenomena);

– We can’t apply Weierstrass approximation theorem anymore.
– Limiters in our code:

– TVD limiter: 2nd order [2]
– Positivity preserving limiter [5], ideally Maximum principle preserving

limiters1
– High order limiter [3]

1If you are interested, ask me about what we are working on after the talk!
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Results: Supersonic advection of a discontinuous density
profile[4]

Density, (vx , vy ) = (100, 50) at T = 10.

February 12, 2017 Carving through the Codes 2017



Institute for Computational Science, Institute of Mathematics

Results: 2D Riemann problem case 3 [1]

Figure: Density at T = 0.25. 1st order, N = 1282 and 10242.

Figure: Density at T = 0.25. 2nd, 3rd, 4th order with N = 1282.
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Computational cost

CPU and GPU timing for advection of discontinuous density at T = 10
N = 642.
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Disks

Figure: Density, 1st order, rotation = 0, 1, 2 at N = 5122, 1 at N = 16002

Figure: N = 2562: 2nd order, rotation = 1, 10, 40. 3rd order, rotation = 10
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Steady states: Preliminary work

Figure: Density. Well balanced scheme, η = 1x10−4, 1 rotation, 1st order

Figure: Non vs well balanced scheme, η = 1x10−4, 1 rotation, 2nd order
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Conclusions & Outlooks

– DG is a good scheme for parallel implementations

– Better resolution power for the same resolution

– Time integration order must be at least as high as space integration

– Going to high order can lead to less taylor made solutions (by reducing
error from e.g. mesh alignment, specific geometry)

– Finding appropriate limiters is important
– Limiting conservative variables is generally bad
– Primitives yield better results
– Characteristics yield the best results but unclear how to do it for cross

terms in high order modes
– Maximum preserving limiters are desirable - discretized solution mimics

the solution to the original PDE

– Well balanced schemes for general equilibria states is an open question
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Appendix: Test cases
Riemann problem: case 3
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Appendix: Cold keplerian disk

Based on [Cullen & Dehnen 2010].

p = p0

ρ(r) =



ρ0 r < 0.5− ∆r
2

(ρD − ρ0)(r − (0.5− ∆r
2 )) + ρ0 r − 0.5 ≤ |∆r

2 |
ρD 0.5 + ∆r

2 ≤ r < 2− ∆r
2

−(ρD − ρ0)(r − (2.0− ∆r
2 )) + ρD r − 2 ≤ |∆r

2 |
ρ0 elsewhere

vx(r) =

{
−y/r3/2 r − 2 ≤ 2|∆r

2 |
0 else

vy (r) =

{
x/r3/2 r − 2 ≤ 2|∆r

2 |
0 else
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Appendix: Cold keplerian disk

x,y are centered at (3,3).
Aceleration is given:

ax(r) =

{
−x/r3 r > rc

− x
r(r2+ε2)

(r2c +ε2)

r3c
r ≤ rc

ay (r) =

{
−y/r3 r > rc

− y
r(r2+ε2)

(r2c +ε2)

r3c
r ≤ rc

ε = 0.25, rc = 0.5− 0.5∆r , ∇Φ = −a.
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Appendix: Flux-Source balance

General idea: For problems where a steady state solution exists, a solution
close by the steady state can be seen as:

U = Ue + δU

For a steady state solution Ue of (1), we have the following equality:

∇ · F (Ue) = S(Ue) (1)

The idea is to develop numerical schemes which can preserve a discrete
steady state of interest up to machine precision.
This is called a “well-balanced scheme" [LeVeque1998].
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Steady state
∂t · ≡ 0
Hydrostatic equilibrium: u, v ≡ (0, 0)
Euler system simplifies to:

∂x(p) = −ρΦx (2)

∂y (p) = −ρΦy (3)

Dynamic equilibrium: vθ =
√

(− 1
ρ

dP
dr

+∇Φ) Taking a simplified solution:

ρ = const (4)

vx = −vt
r
y (5)

vy =
vt
r
x (6)

p = cs2ρ (7)

with ∇Φ = r

(r2+ε2)
3
2
and vt =

√
− 1

rho
(1 + 2h2 − 3h2r2

r2+ε2 )r2Ωk + r∇Φ
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