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Feedback Energy per unit Stellar Mass
Chabrier (2003) IMF

Radiative Stellar Feedback
~ 200 times as much energy as SN and Winds
Longer timescales 
Long and short range effects
Peak temperatures limited  < 20,000 K
Outflow speeds 10-30 km/s
Limited direct feedback – cloud busting only

Exception: Radiation Pressure
With photon-trapping if that works …
(Murray+ 2005, 2011, Krumholz & Thomspon
2012, David+ 2014)
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Radiation Bands
FUV 

~ 6 eV-13.6 eV  Photoelectric heating
Opacity: Dust   ~ 300 cm2/g (Z/Zsolar) 

11.2 eV- Lyman-Werner  Dissociate H2

Extra Opacity: H2

Complicated: see Gnedin & Draine 2014

EUV 
13.6 eV  Ionize HI
Opacity: HI    ~ 5,000,000 cm2/g (HI/H)

15.2 eV Ionize H2

24.6 eV Ionize He

> 6 eV Ionize Metals, e.g. 11.2 eV Carbon



Feedback Energy per unit Stellar Mass
Chabrier (2003) IMF

Radiation Bands
FUV 

~ 6 eV-13.6 eV  Photoelectric heating
Opacity: Dust   ~ 300 cm2/g (Z/Zsolar) 
Length scale in ISM  ~ 1 kpc
Dominant heater of diffuse/neutral ISM
Also produced by recombinations
Flux varies by factor ~ 100 across galaxy disk

EUV 
13.6+ eV  Ionize HI etc…
Opacity:    up to 5,000,000 cm2/g
Length Scale in ISM ~ 10 pc (HII regions)

Few 100 pc in diffuse ISM
Dominant heater, ionizer of IGM
40% recombinations – new ionizing photon
Flux varies strongly w/ environment



Numerical Issue:  
Feedback Double-counting

• Primary role of EUV radiation is to disperse the 
molecular cloud (e.g. Dale+ 2012, Galvagnin+ 2015)

• Feedback models that add radiation as “just more 
energy” are wrong

• EUV radiation only strongly couples close to the 
source, i.e. low escape fraction

• Adding “Extra” feedback is only valid IF you resolve 
the dense molecular gas and/or the model halts 
once the cloud is dispersed

• Codes with SF threshold <= 100 cm-3 probably should 
not add full EUV -- clouds already low density (see 
also Naab+Ostriker 2017, Keller+ 2016, Semenov –
gas supported by Pressure floor, numerics) 

Galvagnin+ 2015



Full Radiative Transfer Problem:

• 3 spatial coordinate

• 2 angles

• Frequency

• Time

• Characteristic Speed c  

Expensive   

I(x, y, z,q,f,n, t)



Radiative Transfer for Galaxy Formation

Approximate is better than constant

Considerations:

• For heating/chemical networks, only mean (angle 
averaged) intensity needed

• Scattering is common, (e.g. dust opacity ~ 50% 
scattering) – directional information lost

• Many sources, including recombinations in gas

• Often limited by front speed/chemistry not by speed 
of light



Classes of RT Methods

Flux Limited Diffusion/Moment Methods

• Treat radiation as continuous 

• Good for diffusive regime/optically thick. e.g. IR

• Easy to have many sources

• FLD: Radiation bends around corners: poor shadows

• Severe timestep limits

Improvements: OTVET (Gnedin&Abel 2001),  M1-methods (e.g. 
Rosdahl+ 2013)

Ray-tracing/ Characteristic Methods

• Adjustable angular accuracy: good shadows

• Can avoid timestep limits

• Simple methods expensive for many sources



Ray-tracing

Explicit characteristics  ( finite c )
N elements:  Cost (Ndirections N) per step
Time steps: dt ~ L/N1/3/c  << dtHydro

e.g. SPHRay (Altay+ 2008), ENZO RT (Reynolds+ 2009), C2 -ray 
(Mellema+ 2006), FLASH
Optimization – combine rays/packets
e.g. Traphic (Pawlik & Schaye 2008)
O(N Nray Niter )   for fixed time interval t,  Iterations:  Niter ~ t N1/3/L/c

Full ray trace   ( c  Infinity )
N elements:   Basic Cost O(Nsource N 4/3)
Monte-Carlo-like: Multiple rays per cell
Timesteps: dt ~ dtionize ~ dtHydro

e.g. TreeCol (Clarke+ 12), URCHIN (Altay & Theuns 2013), 
Abel&Wandelt 2002,  MORAY (Wise&Abel 2011)



Target: Fast RT for Cosmology 
Simulations/ Galaxy Formation

Primary Galaxy Formation approach: 
Spatially uniform Ionization rates, Γ(t)

Goal: For similar cost to hydro+gravity:
Approximate Local Γ(x,y,z,t) 

Reverse Ray Trace:  Tree approach O(N log N)
Only trace radiation to elements that need it 

see also URCHIN (Altay & Theuns 2013), C2 -ray (Mellema+ 
2006), Kannan+ 2014, Hu, Naab+ 2017 



Gasoline

Gasoline /

Initial Code base for Radiative Transfer method:
Gasoline parallel code (MPI)  (Wadsley+ 2004)
• pkdgrav N-body Solver (Binary Tree, 
Hexadecapole) and Modern Smoothed Particle 
Hydrodynamics (see e.g. Wadsley+ 2017)

Also implementing into 
CHANGA:
Rewrite of Pkdgrav2/Gasoline in 
Charm++ (Jetley, Quinn+ 2008)
• Faster Gravity:  Fast-

Multipole-like Tree
• Scales to > 100,000 cores
• All prior Gasoline physics 

modules now ported



First Stage: Tree Walk

• Centre of mass

 Centre of Luminosity

• Error control by 
opening angle dcell/r < θ

•

• Optically thin
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First Stage: Tree Walk

• Cost: O(Nsink log Nsource)

• Multiple timesteps:  
O(Nactive log Nsource)
Typical Nactive < 0.01 N

• Highly Parallelizable

• No RT timestep
requirement

• Runtime < Tree Gravity
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Gas  Sink

Sources
e.g. stars



Second Stage: Absorption

Far from source/sink use Tree Cells

• Tree nodes carry opacity, density information, use geometric 
intersection to get length:     

 record optical depth to traverse cell

Near source/sink use particles

• Similar to TRAPHIC/SPHRay:                                                          
 Sort particles:  Optical depth from 2d integral of Kernel,  no 
self-optical depth

Note: Only approximate photon conservation, zero light travel 
time

Woods, Wadsley, Grond & Couchman, in prep



Particle-Particle issues

b
b

• Particles treated as thin disks with column equal to integrated 
particle density   W 2D(b)

• Both particles consider other to be in front on it.  Solution:  
sort particles radially  r 1 < r 2

General issue: single cell/particle can have substantial optical 
depth –entire cell gas doesn’t see the same radiation field

Fixes, see Mellema+ 2006, Pawlik+Schaye 2011

r 1

r 2



• Re-walk Tree       
source to sink

• Adaptive error control:  
opacity, angular size, 
current optical depth 

Default: Angular size 

•

Second Stage: Absorption
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Woods, Wadsley, Grond & Couchman, in prep



Overall Method Scaling

• Multiple timesteps:  
O(Nactive log Nsourcelog N)

Typical Nactive < 0.01 N

• Highly Parallelizable

• No RT timestep
requirement

• Runtime ~ Tree Gravity

Woods, Wadsley, Grond & Couchman, in prep



Code Tests: Strömgren Sphere

Thermal Strömgren Sphere, cf. Iliev+ 2006
Strömgren Sphere, Altay+ 2008



Trapped Ionization Front, cf. Iliev+ 2006

Code Tests: Shadowing Test

Shadow Test, cf. Petkova & Springel 2009



Pathological case:
High opacity far from receiver

Simple ionization fronts (e.g. Stroemgren
Sphere) are easy – default scheme refines 
close to elements being ionized
Opacity closer to source is low

For small, dense absorbers in between, 
added refinement needed  

Full refinement:  O(Nactive log Nsource N 1/3 )
(Ray Tracing)

Default refinement:  O(Nactive log Nsource log N)



Absorption Refinement Strategy

• Consider two paths through large cell

• Calculate minimum/maximum absorption coefficient 
(α=ρκ) through cells (during tree build) 

• Refine if 
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Absorption Refinement Strategy

Adaptive 
Refinement

Full 
Refinement

1.0refine



Absorption Refinement Strategy

Woods, Wadsley, Grond & Couchman, in prep



Cosmic (e.g. UV) Backgrounds

Instead of periodic replicas of box sources, use 
background flux at fixed distance (cf. Altay & Theuns
2013)

Zoom in simulation: simpler, surround active 
region with shell of fixed surface flux

Shell approximation:
Uniform radiation 
field in inner shell
Field cuspy at shell 
radius 



Radiative Transfer Summary

• Dynamic Radiative Transfer

• Applications: Lyman-Werner/H2, UV/Ionization, X-ray, FUV 
Photoelectric/Heating, not IR

• Multi-band relatively cheap, knowledge of optical depth –
detailed spectral shape changes

• Scales as number of active elements (multiple timesteps) –
lots of info to use to adapt cost because total flux known

• Could allow gas to be sources – scattering

• No detailed photon conservation => front timing  approximate 
but no Monte-Carlo type noise

• No RT timestep required but can improve accuracy with 
ionization timestep

Woods, Wadsley, Grond & Couchman, in prep



Test Case: FUV in a Disk Galaxy

FUV has long mean free paths, doesn’t require high resolution
Note: only ~ 3% of absorptions result in gas heating
Also: Typically scatter ~ absorption (functions of wavelength, grains)
First attempt: just absorption

AGORA Isolated Galaxy IC
• 1012 Msun, 1010 Msun Gas, 4x1010 Msun old stars
• Relaxed for 300 Myr first
• Gas resolution: m_gas =104 Msun, softening 80 pc, Jeans floor
• Single band: FUV
• Gasoline physics as in Keller+ 2014, 2015
• Star formation: Density > 10 H/cc, T < 1000 K
• Superbubble feedback 0.5x1051 erg/SN (Keller+ 2014)



AGORA + FUV



Star Formation Rates with FUV

No feedback
FUV only

SN only
SN + FUV

FUV no absorption



FUV only

SN only

SN + FUV
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M63/ NGC 5055  

AGORA  FUV+SN
(superbubble)

NGC 5055/ M63  
“sunflower galaxy”
Spitzer Image

Ostriker, McKee
& Leroy 2010

THINGS NGC5055
surface

densities

Stars
Gas

Stars
Gas



AGORA vs. NGC 5055

Ostriker, McKee & Leroy 2010

No feedback
FUV only
SN only
SN + FUV

AGORA isolated disk

Kennicutt-
Schmidt



RT in Galaxies Summary

Work in progress

FUV has large impacts on observables, e.g. gas phases

FUV can regulate star formation – added dimension for 
Kennicutt-Schmidt relation

Note: Prior work (e.g. Ostriker+ 2010) overstated 
impact of FUV (assumed P_SN = 5 x P_FUV)

Tricky considerations: unresolved structure, escape 
fractions (see e.g. Kravtsov+Gnedin 2011 resolution 
independent subgrid approaches)

More detailed simulations in progress…
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