

Established by the European Commission Supporting top researchers

from anywhere in the world

Challenges in computing multi-dimensional stellar structures

I. Baraffe (Exeter- Lyon)

The TOFU team (Tool of the FUture): Exeter: Tom Constantino, Jane Pratt, Tom Goffrey Lyon: Rolf Walder, Doris Folini, Mihail Popov (London : M.Viallet)

Motivation for a new tool in stellar physics based on time-implicit simulations

Characteristics of stellar interiors:

Many (M)HD processes play key roles on stellar structure and evolution

Convection, rotation, dynamo, mixing, turbulence, etc....

- Characterised by very different timescales

- Very different lengthscales

Pressure scale height: $H_P = dr/dlnP$ centre: $H_P \sim R_{star}$ Surface: $H_P \sim 10^{-3} - 10^{-2} \times R_{star}$

- Range of Mach numbers (M ~ 10⁻¹⁰ - > 1)

Many successes of ID (spherical symmetry) models based on phenomenological approaches—> calibration of free parameters from observations

BUT ⊗ no predictive power
⊗ degeneracy of solutions
⊗⊗ do we really understand the physics?

⇒ Need for multi-dimensional models

(ideally in spherical coordinates)

Motivation 1: ID Phenomenological approaches have reached their limits

Motivation 2: Need **sophisticated** tools and models to match high quality data (e.g asteroseismology)

Development of MUSIC "Multidimensionnal Stellar Implicit Code"

(Viallet et al. 2011, 2013, 2016; Geroux et al. 2016; Pratt et al. 2016; **Goffrey** et al. 2016)

- Spherical geometry (2D or 3D)
- Fully compressible hydrodynamics

With the radiative conductivity $\chi = 16\sigma T^3/3\kappa
ho$

 κ Rossland mean opacity (OPAL) + realistic equation of state (ionisation, partial degeneracy, etc...)

• Difficulty with various disparate timescales (e.g various stiff scales)

 $\tau_{evol} = \tau_{therm,} \tau_{conv,} \tau_{rot,} \tau_{nuc} >> \tau_{dyn}$

Implicit time integration (see Tom Goffrey's talk)

 Finite volume method on a staggered grid (really helps for hydrostatic equilibrium ∇P = -pg)

- Initial model from 1D stellar evolution calculation
 - ► interface with Lyon code (Baraffe et al.) and MESA (Constantino et al, in prep)

- Other specificity (difficulty) characteristic of stellar interiors:
 - Very different spatial scales from the centre to the surface: pressure scale height H_P varies by several orders of magnitude
 - Very steep gradients close to the surface

<u>Current status</u>: Simulations of stars of various masses in 2D/3D slices from central region to surface

Performances for a young (pre main-sequence) star (1 $M_{\odot, \sim}$ 60% convective envelope)

• 2D simulations up to 2432x2048 (from ~ 0.1 R to surface)

1024² with 256 procs, 72hr wallclock time for 1 convective turnover ($\tau_{conv} \sim 10^6 \text{ s} \sim 10 \text{ days}$)

• 3D simulations up to 512³ 256³ with 512 procs, 6 days wallclock time for one τ_{conv}

MUSIC is parallelized using MPI domain decomposition

Pratt et al. 2016

First application: Effect of accretion on the structure of very young objects (Geroux et al. A&A, 2016)

Test one main assumption in current 1D stellar evolution codes: instantaneous redistribution of accretion mass and energy in the interior

Effect of "burst" (episodic) accretion $\dot{M} = 10^{-4} M_{\odot}/yr$ on a young convective star

Effect of amount of accretion energy absorbed $L_{acc} = \alpha \epsilon (GM\dot{M})/R$ $\alpha \sim 0 \longrightarrow$ "cold" accretion $\alpha > 0 \longrightarrow$ "hot" accretion

- **•** Treatment of the surface must be realistic with $F_{surf} = \sigma T^4$
- ⇒ Use of a spliced grid to resolve smaller scales/steep gradients

First result:

Multi-D simulations confirm assumption in 1D codes of instantaneous and homogeneous redistribution of accreted material for cold/warm accretion for $\alpha \leq 0.1$

 $(L_{acc} = \alpha \varepsilon (GM\dot{M})/R)$

Visualization with tracer particles on velocity field

Second result:

- For hot accretion ($\alpha \ge 0.1$), formation of a hot surface layer (no deep mixing of accretion energy)
- Assumption in 1D codes of redistribution of accretion energy deep in the interior **overestimates the effect** on the structure for α ≈ 0.1 (expansion of accreting object)

Use of an accretion boundary condition L_{surf} = L_{acc} is more realistic in 1D codes (see details in Geroux et al. 2016, A&A)

The importance of running over many many convective turnover timescales

Get enough data for a relevant statistical analysis

Application to the **overshooting** problem in stars

(Long standing problem affecting mixing, transport of angular momentum and magnetic field. Great constraints from asteroseismology)

Velocity magnitude during steady-state convection, in a 128^3 wedge of our sun at ~ 1 Myr, simulated with a the three-dimensional, time-implicit, compressible LES, stellar evolution code MUSIC (ERC Advanced grant, University of Exeter).

Study of envelope overshooting (Pratt et al. 2016, 2017)

➡ range of 2D/3D simulations of a star with a convective envelope and a radiative core (Pre-main sequence star)

Velocity magnitude : 2D high res 2432x2048

Typical shape of the penetration depths (at a given time): extent of downflows beyond the convective boundary varies with colatitude θ

Straight average miss the larger penetration events

To perform a statistical analysis of plumes: **several hundreds** (up to ~ 500) of convective turnover timescales $\tau_{conv} \sim 3 \ 10^6 \ s \ (\tau_{dyn} \sim 4 \ hr)$

Better description of the statistical complexity of the data: **Extreme Value Theory** Determine the probability of events that are more extreme than any previously observed (used in Earth science, traffic prediction, unusually large flooding event, finance...)

➡ Distribution of maximal penetration depths, linked to extreme events in the tail of the distribution → contribute to mixing

Derivation of a diffusion coefficient D(r) characterising the mixing driven by penetrative plumes

 $D_{\text{Pratt}}(r) = D_0[1 - exp(-exp(f(r)))]$

(Pratt et al. A&A, 2017, submitted)

(Baraffe, Pratt et al. A&A, in prep)

Summary of the advantages of MUSIC approach for stellar physics:

- **Spherical coordinates** natural for stellar interiors (*no box-in-a-star approach*)

- **Realistic input physics** (EOS/opacities) and direct link with 1D stellar evolution initial models (spherical symmetry)

- Solve **fully compressible** hydrodynamical equations (background can evolve and depart from adiabatic, in opposite to anelastic proxy)

- Time implicit solver

- -> large timesteps (CFL ~ 10-1000)
- —> Cover a range of Mach numbers: from centre (M << 1) to surface M ~ 1 (no need for truncating the surface e.g anelastic codes)

-> speed up the relaxation phase starting from 1D initial model (large time steps + stability) (key to explore a range of parameters)

Disadvantages

- (1) Choice of time step is crucial (accuracy, convergence, performance) and problem/star dependent
- (2) Physics based preconditionner adapted to present physics (no MHD)
- (3) 3D simulations still too CPU time consuming

Next steps

- Improve the solver (multi-grid methods?)
- (Adaptive) mesh refinement (surface) ?
- Study rotation effects (already included in MUSIC)
- MHD (long term)

Main conclusion: despite many skepticism/challenges, the concept of a **time implicit fully compressible hydrodynamic code** works (MUSIC). It begins to bear fruits and to provide improvement of phenomenological approaches used in 1D stellar evolution codes.

➡ It has formidable potentials