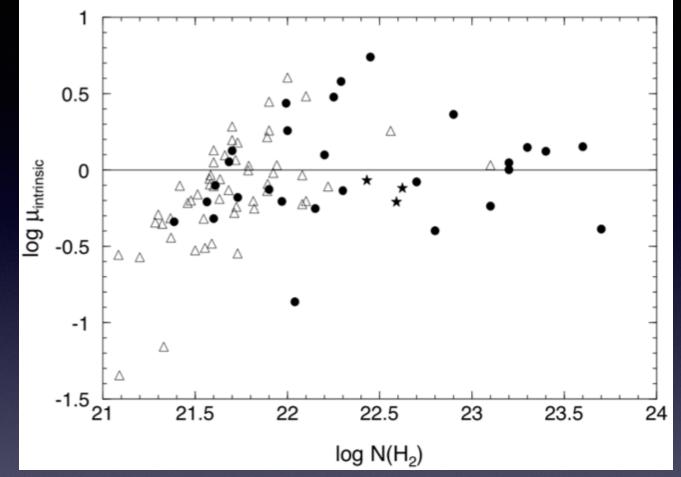
Disk formation during star formation in **non-ideal** MHD simulations

G. Chabrier, J. Masson, P. Marchand, B. Commerçon, P. Hennebelle, N. Vaytet, R. Teyssier

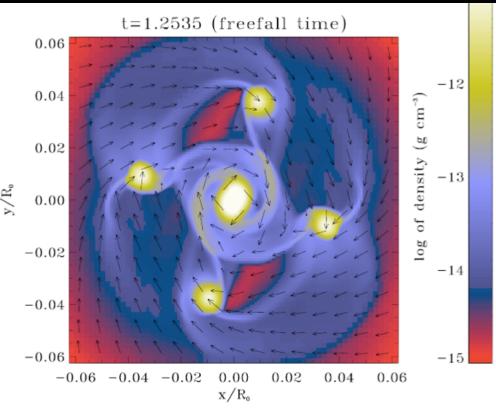

State-of-the-art

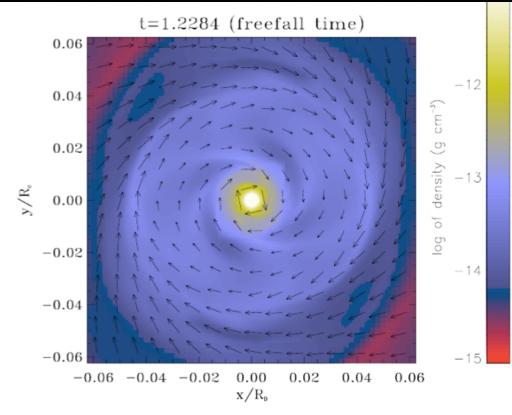
3D dynamical models make step-by-step necessary developments

- magnetic fields: ideal and non ideal MHD
- radiation hydrodynamics
- chemodynamics, but no retroaction
- cosmic rays
- inclusion of different feedback processes
- non-ideal EOS (Saumon, Chabrier, vanHorn 1995)

$$\begin{aligned} \partial_t \rho + \nabla \cdot [\rho \mathbf{u}] &= 0 \\ \partial_t \rho \mathbf{u} + \nabla \cdot [\rho \mathbf{u} \otimes \mathbf{u} + P \mathbb{I} - \mathbf{B} \otimes \mathbf{B}] &= -\lambda \nabla E_{\mathbf{r}} \\ \partial_t E_{\mathbf{T}} + \nabla \cdot [\mathbf{u} (E_{\mathbf{T}} + P) + \mathbf{B} (\mathbf{B} \cdot \mathbf{u})] &= -\mathbb{P}_{\mathbf{r}} \nabla : \mathbf{u} - \lambda \mathbf{u} \nabla E_{\mathbf{r}} + \nabla \cdot \left(\frac{c\lambda}{\rho \kappa_{\mathbf{R}}} \nabla E_{\mathbf{r}}\right) \\ \partial_t E_{\mathbf{r}} + \nabla \cdot [\mathbf{u} E_{\mathbf{r}}] &= -\mathbb{P}_{\mathbf{r}} \nabla : \mathbf{u} + \nabla \cdot \left(\frac{c\lambda}{\rho \kappa_{\mathbf{R}}} \nabla E_{\mathbf{r}}\right) + \kappa_{\mathbf{P}} \rho c (a_{\mathbf{R}} T^4 - E_{\mathbf{r}}) \\ \partial_t \mathbf{B} + \nabla \times \left[\mathbf{u} \times \mathbf{B} - \frac{\mathbf{J}_{\times} \mathbf{B}}{e n_{\mathbf{e}}} + \frac{[(\nabla \times \mathbf{B}) \times \mathbf{B}] \times \mathbf{B}}{\gamma_{\mathbf{A} \mathbf{D}} \rho \rho_{\mathbf{i}}} - \frac{\mathbf{J}}{\sigma_{\mathbf{i}}}\right] = 0 \end{aligned}$$

(Heiles et Crutcher 2005)

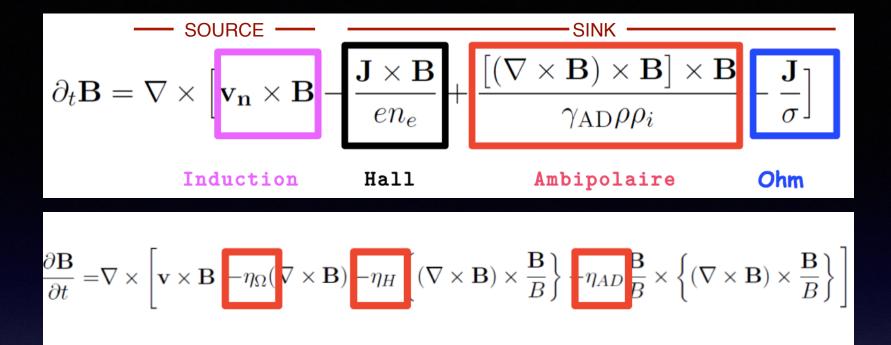

$$\rho \frac{D \boldsymbol{v}}{D t} = -\boldsymbol{\nabla} \left(P + \frac{B^2}{2\mu_0} \right) - \rho \boldsymbol{\nabla} \Phi + \left(\frac{\boldsymbol{B}}{\mu_0} \cdot \boldsymbol{\nabla} \right) \boldsymbol{B}$$


$$\mu = \frac{\left(\frac{M}{\Phi}\right)}{\left(\frac{M}{\Phi}\right)_{crit}} \approx 2$$

 $(\phi_{cr}=B_{cr} \pi R^2 \sim G^{1/2} M)$

Hydro

IMHD

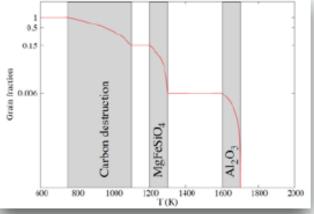

Hennebelle & Teyssier (2008)

too large and massive disks too much frag'n

No disk !

- Moment angulaire
- Flux magnétique

 $\omega r^2 \\ \phi_B \propto B r^2$

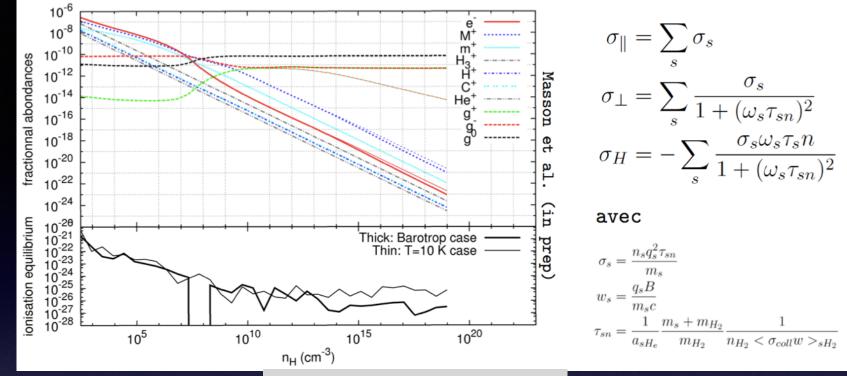

$$\begin{aligned} Zen_i(\mathbf{E} + \mathbf{v_i} \times \mathbf{B}) - \rho_i \sum_{j=e,n} \nu_{ij}(\mathbf{v_i} - \mathbf{v_j}) &= 0 \\ -en_e(\mathbf{E} + \mathbf{v_e} \times \mathbf{B}) - \rho_e \sum_{j=i,n} \nu_{ej}(\mathbf{v_e} - \mathbf{v_j}) &= 0 \\ \mathbf{avec} \quad \nu_{\mathbf{kj}} &= \rho_j \gamma_{kj} = \rho_j < \sigma v >_{kj} (m_j + m_k)^{-1} \\ \mathbf{E} + \left[\mathbf{v} + (\mathbf{v_e} - \mathbf{v_i}) + (\mathbf{v_i} - \mathbf{v}) \right] \times \mathbf{B} + \frac{n_n m_e < \sigma_{en} v_e >}{e} \left[(\mathbf{v_e} - \mathbf{v_i}) + (\mathbf{v_i} - \mathbf{v}) \right] = 0 \\ \mathbf{Soit, avec} : \gamma_{AD} &= \frac{<\sigma_{in} v_i >}{(m_i + m_n)} \quad \mathbf{et} \quad \sigma = \frac{n_e e^2}{n_n m_e < \sigma_{en} v_e >} \end{aligned}$$

$$\frac{dx_i}{dt} = \sum_{j=1}^N \left[\alpha_{ij} x_j + \frac{n_H}{2\zeta} \sum_{k=1}^N \beta_{ijk} x_j x_k - \frac{n_H}{\zeta} \gamma_{ij} x_j x_i \right]$$

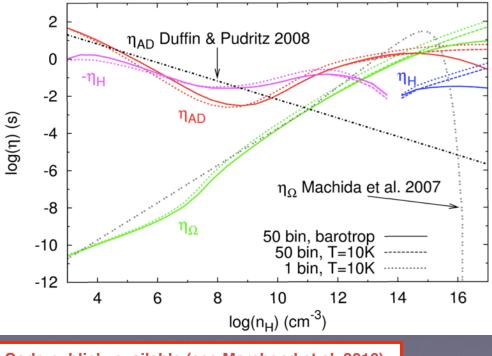
Equilibrium chemistry for non-ideal MHD

✓ Reduced chemical network dedicated for ionisation (based on the work by Umebayashi & Nakano 1990)

- H, He, C, O, metallic elements (Fe, Na, Mg, etc..)
- H⁺, H₃⁺, He⁺, C⁺, molecular and metallic ions
- bins in the dust grains size distribution (G, G⁺, G⁻)
- dust evaporation at T>800 K
- thermal ionisation of potassium (T>1000 K)
- neutral elements have constant abundances

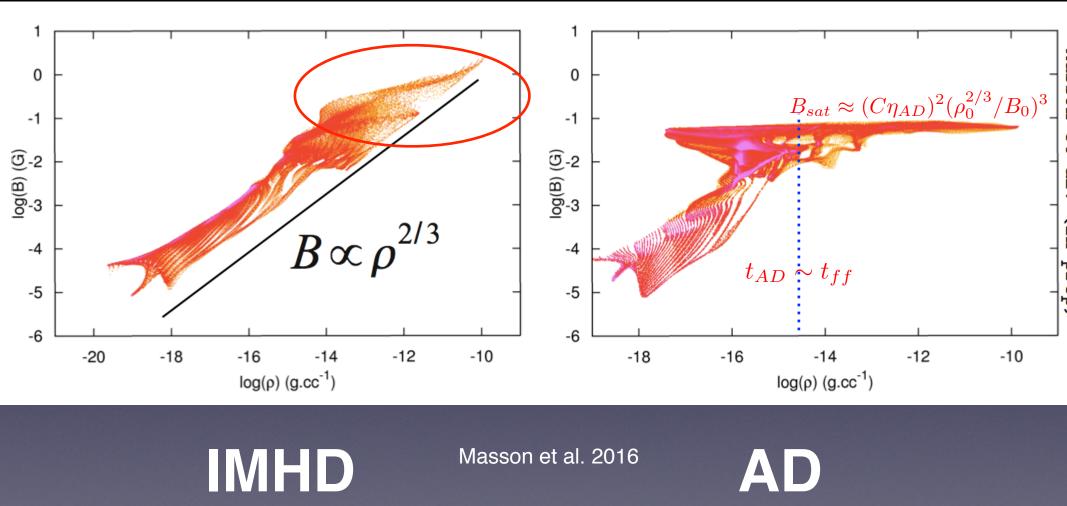

 ✓UMIST database for gas species (McElroy et al. 2013)
 ✓Kunz & Mouschovias (2009) for interactions with and between grains

✓ Goal: compute a 3D table of abundances:

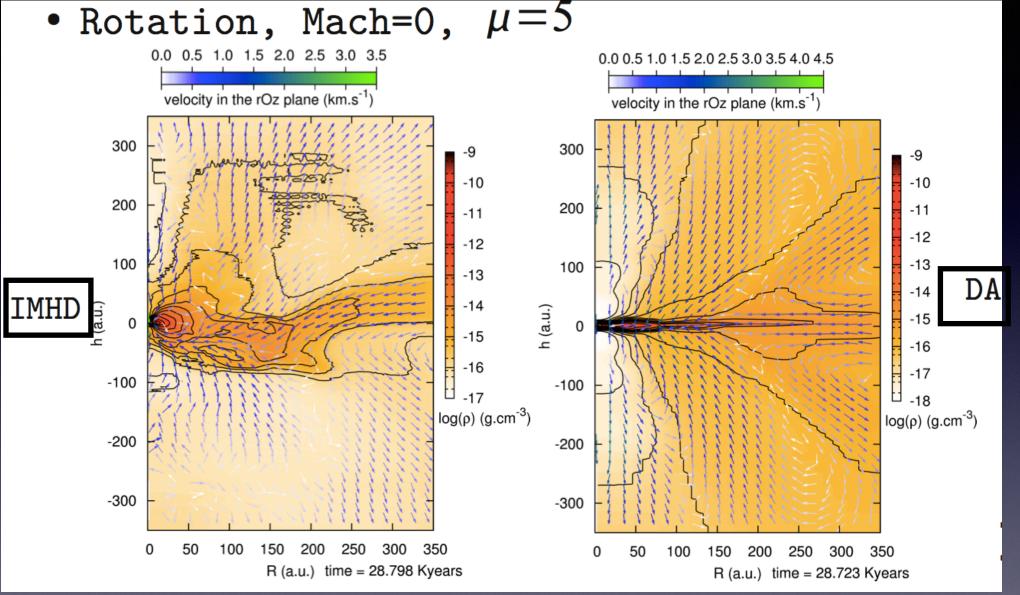

- depends on temperature, density and CR ionisation
- used on-the-fly in 3D calculations to compute resistivities

Marchand et al. (2016)

Reaction	α	β	γ
$H^+ + O \rightarrow H + O^+$	6.86×10^{-10}	0.26	0
$H^+ + O_2 \rightarrow H + O_2^+$	2.00×10^{-9}	0.00	0
$H^+ + M \rightarrow H + M^{\tilde{+}}$	1.10×10^{-9}	0.00	0
$He^+ + H_2 \rightarrow He + H^+ + H$	3.70×10^{-14}	0.00	35
$He^+ + CO \rightarrow He + C^+ + O$	1.60×10^{-9}	0.00	0
$He^+ + O_2 \rightarrow He + O^+ + O$	1.10×10^{-9}	0.00	0
$H_3^+ + CO \rightarrow H_2 + HCO^+$	1.36×10^{-9}	-0.14	0
$H_3^+ + O \rightarrow H_2 + OH^+$	7.98×10^{-10}	-0.16	0
$H_3^+ + O_2 \rightarrow H_2 + O_2 H^+$	9.30×10^{-10}	0.00	0
$H_3^+ + M \rightarrow H_2 + H + M^+$	1.10×10^{-9}	0.00	0
$C^{+} + H_2 \rightarrow CH_2^+ + hv$	2.00×10^{-16}	0.00	0
$C^+ + O_2 \rightarrow CO^{\frac{1}{2}} + O$	3.42×10^{-10}	0.00	0
$C^+ + O_2 \rightarrow CO + O^+$	4.54×10^{-10}	0.00	0
$C^+ + M \rightarrow C + M^+$	1.10×10^{-9}	0.00	0
$m^+ + M \rightarrow m + M^+$	2.90×10^{-9}	0.00	0
$H^+ + e^- \rightarrow H + h\nu$	3.50×10^{-12}	-0.75	0
$He^+ + e^- \rightarrow He + hv$	5.36×10^{-12}	-0.5	0
$H_3^+ + e^- \xrightarrow{\rightarrow} H + H + H \\ \rightarrow H_2 + H$	2.34×10^{-8}	-0.52	0
$C^+ + e^- \rightarrow C + h\nu$	2.36×10^{-12}	-0.29	0
$m^+ + e^- \rightarrow m_1 + m_2$	2.40×10^{-7}	-0.69	0
$M^+ + e^- \rightarrow M + hv$	2.78×10^{-12}	-0.68	0
$H_2 \rightarrow H_2^+ + e^-$	1.2×10^{-17}		
$H_2 \rightarrow H^+ + H + e^-$	2.86×10^{-19}		
$He \rightarrow He^+ + e^-$	6.58×10^{-18}		

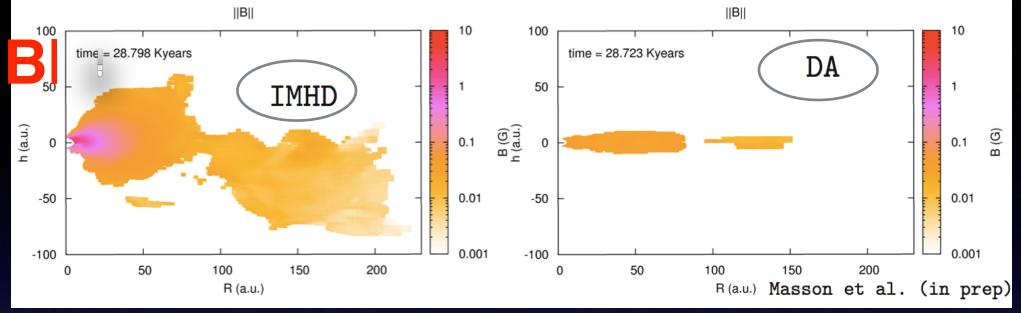

Molecules + grains w/ size distribution

non-ideal MHD resistivities

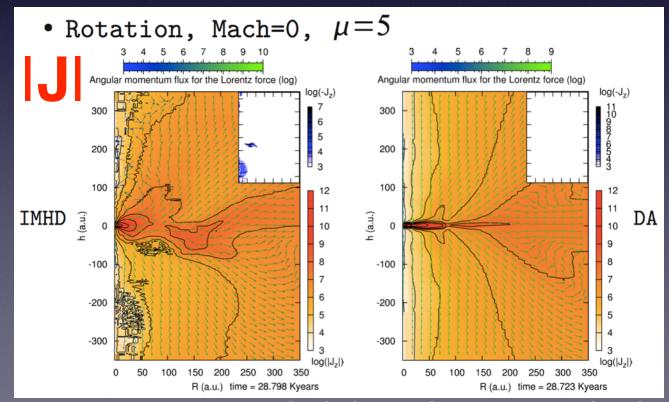

Masson et al., A&A 2016 Marchand et al., A&A 2016

★ <u>Code publicly available</u> (see Marchand et al. 2016)

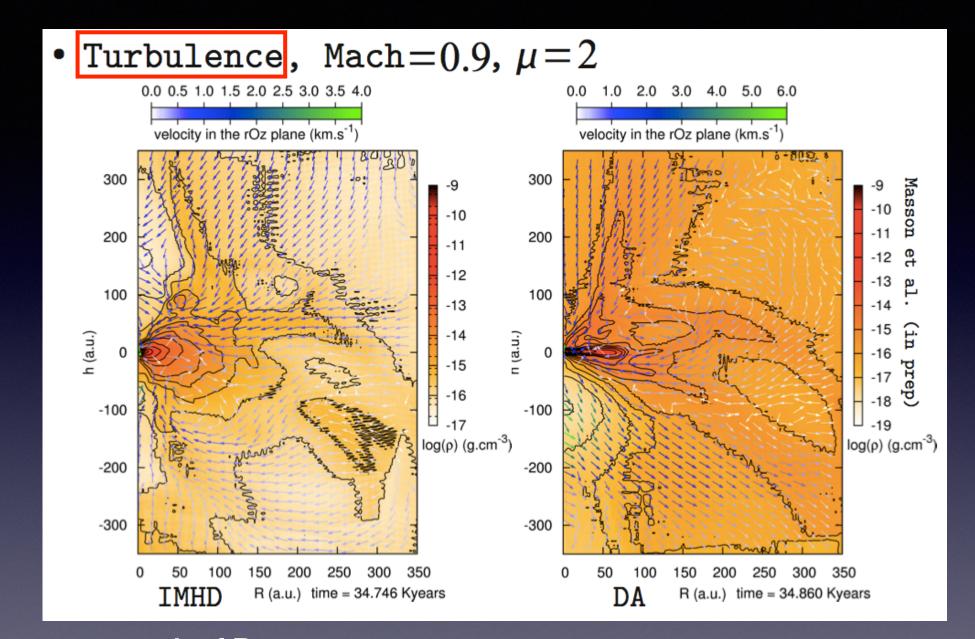
See also:


Desch & Mouschovias 2001, Krasnoplosky et al. 2012, Li et al. 2014, Machida et al. 2014, Tomida et al. 2015, Tsukamoto et al. 2015, Wurster et al. 2016

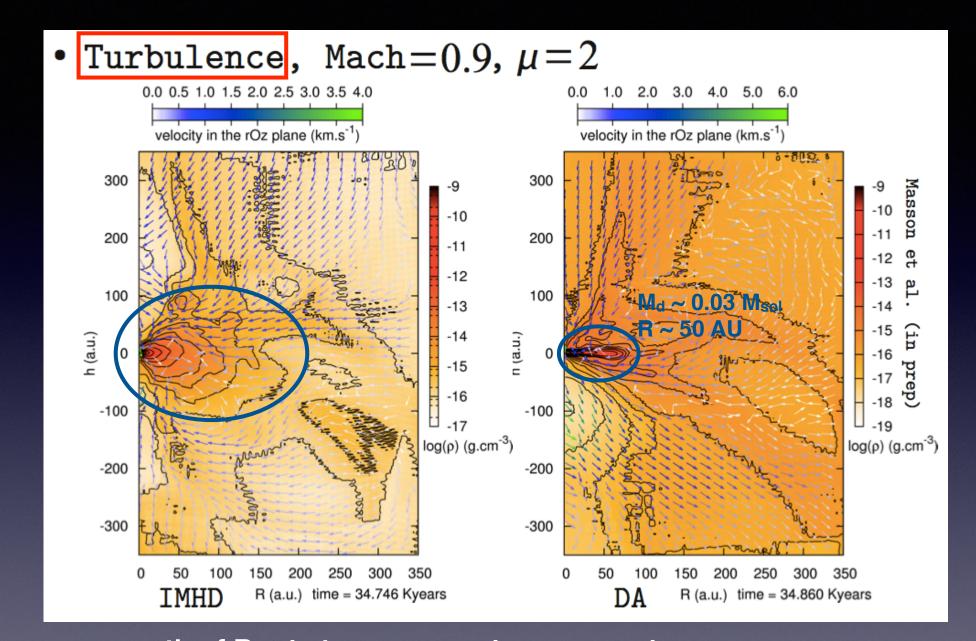
Disk formed within ~ 6 kyr after collapse


pile-up of B_φ strong outflow interchange instability !

Masson et al. 2016



strong (toroidal) mag. support


~B/100; negligible mag. support; less B-bking

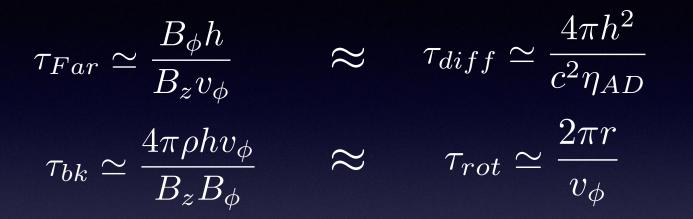
J~10x larger; increases rotational support

decreases growth of B_φ; induces magnetic reconnection => decreases further magnetic breaking less small-scale org'n in J; generates large scale ordered flows : turbulence diffusivity affects the accretion history



decreases growth of B_φ; induces magnetic reconnection => decreases further magnetic breaking less small-scale org'n in J; generates large scale ordered flows : turbulence diffusivity affects the accretion history

Hennebelle, Commerçon, Chabrier, Marchand, ApJL 2016



Hennebelle, Commerçon, Chabrier, Marchand, ApJL 2016

$$R_{AD} \simeq 18 \,\mathrm{AU} \times (\frac{\eta_{AD}}{0.1 \,\mathrm{s}})^{2/9} (\frac{B_z}{0.1 \,\mathrm{G}})^{-4/9} (\frac{M_d + M_\star}{0.1 \,\mathrm{M}_\odot})^{1/3}$$

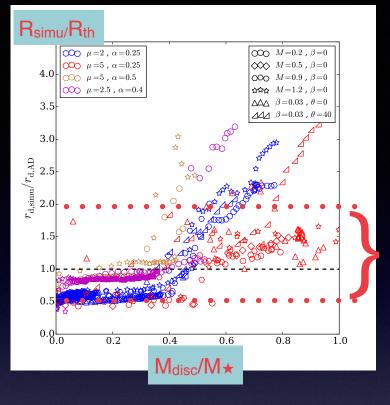
Hennebelle, Commerçon, Chabrier, Marchand, ApJL 2016

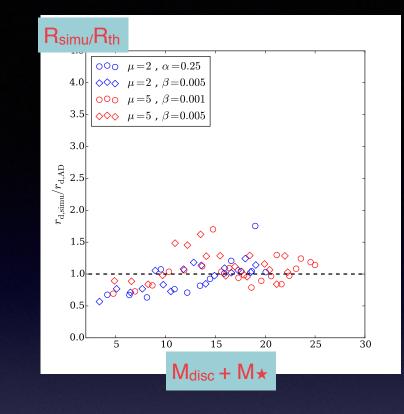
$$R_{AD} \simeq 18 \,\mathrm{AU} \times (\frac{\eta_{AD}}{0.1 \,\mathrm{s}})^{2/9} (\frac{B_z}{0.1 \,\mathrm{G}})^{-4/9} (\frac{M_d + M_{\star}}{0.1 \,\mathrm{M_{\odot}}})^{1/3}$$

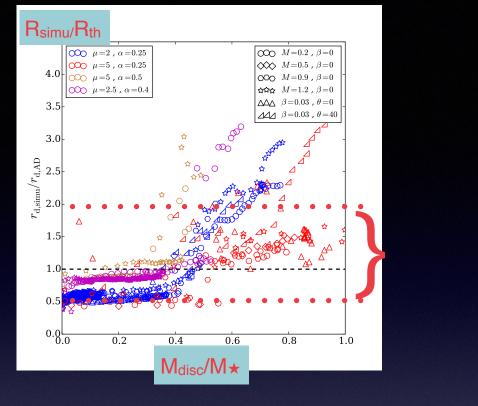
$$R_{hydro} \simeq 106 \,\mathrm{AU} \times (\frac{\beta}{0.02}) (\frac{\rho_0}{10^{-18} \,\mathrm{g \, cm^{-3}}})^{-1/3} (\frac{M_d + M_{\star}}{0.1 \,\mathrm{M_{\odot}}})^{1/3}$$

$$(\beta = \frac{R_0^4 \Omega_0^2}{4\pi/3 \,\rho_0 R_0^3 G})$$

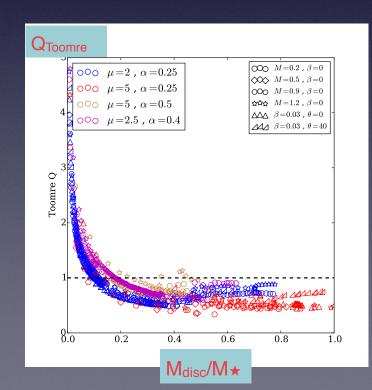
Hennebelle, Commerçon, Chabrier, Marchand, ApJL 2016

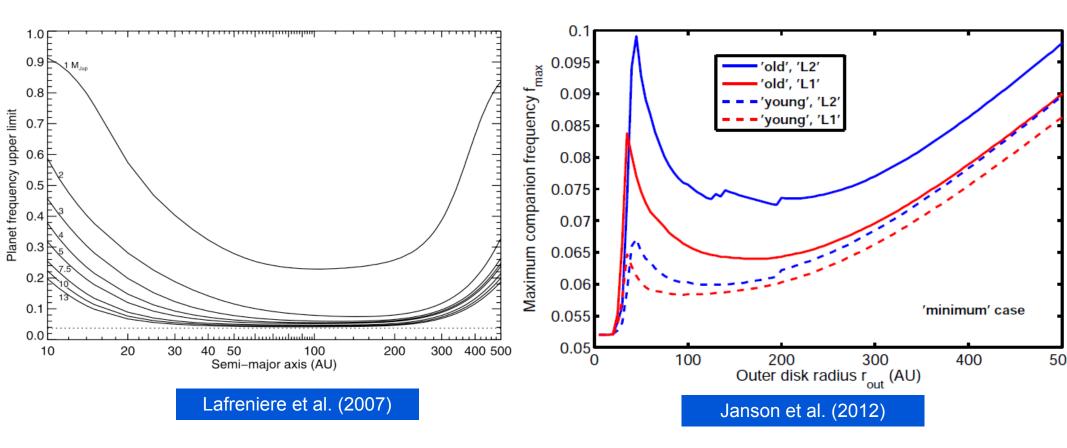



$$R_{AD} \simeq 18 \,\mathrm{AU} \times (\frac{\eta_{AD}}{0.1 \,\mathrm{s}})^{2/9} (\frac{B_z}{0.1 \,\mathrm{G}})^{-4/9} (\frac{M_d + M_{\star}}{0.1 \,\mathrm{M_{\odot}}})^{1/3}$$


$$R_{hydro} \simeq 106 \,\mathrm{AU} \times \left(\frac{\beta}{0.02}\right) \left(\frac{\rho_0}{10^{-18} \,\mathrm{g \, cm^{-3}}}\right)^{-1/3} \left(\frac{M_d + M_\star}{0.1 \,\mathrm{M_{\odot}}}\right)^{1/3}$$

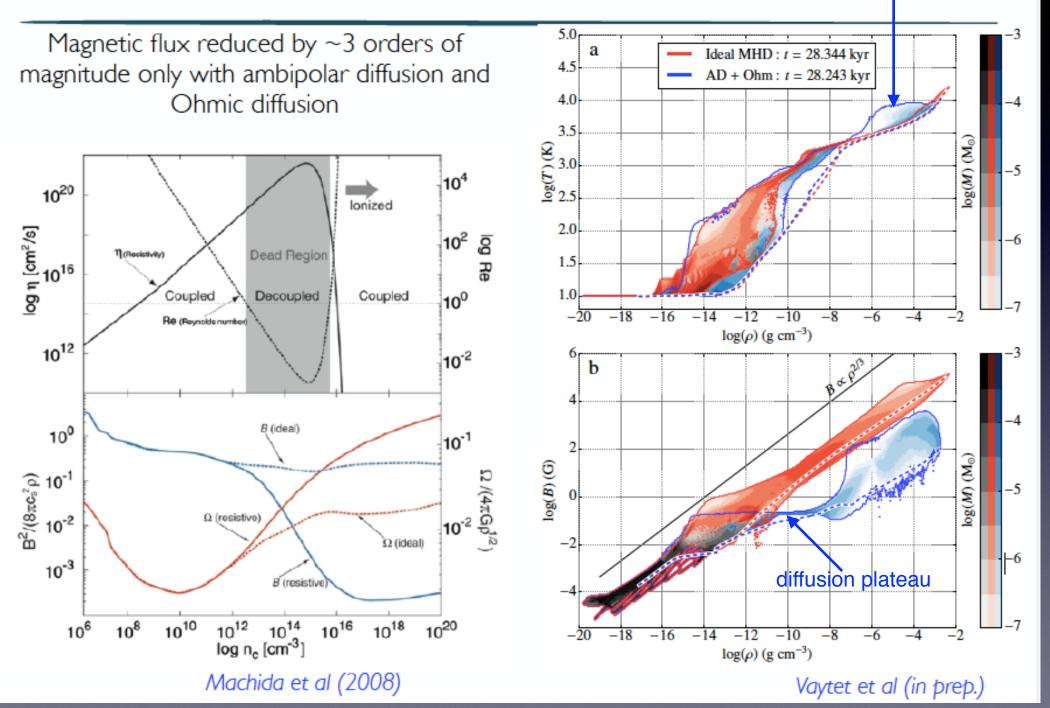
 $\beta = \frac{R_0 \Omega_0}{4\pi/3 \rho_0 R_0^3 G}$


A. Maury's in prep. : ~25% at most of Class-0 disks have R \geq 60 AU

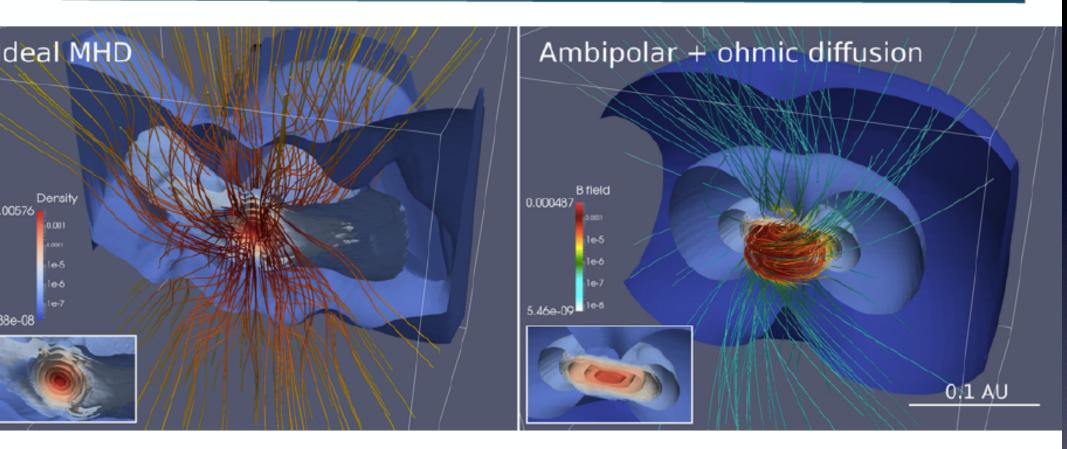


Statistical constraints from D.I. (with caveats!)

apply both to BD's and planets !


<23% of stars have >2 M_J planets at 25-450 AU <9% of stars have >5 M_J planets at 25-450 AU

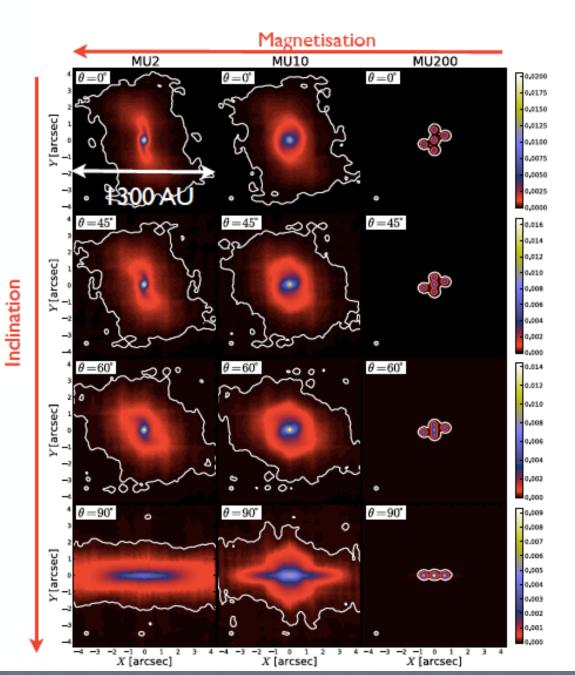
<10% of stars host ~Jupiter-mass objects formed by disk instability


Janson et al. '12, '13

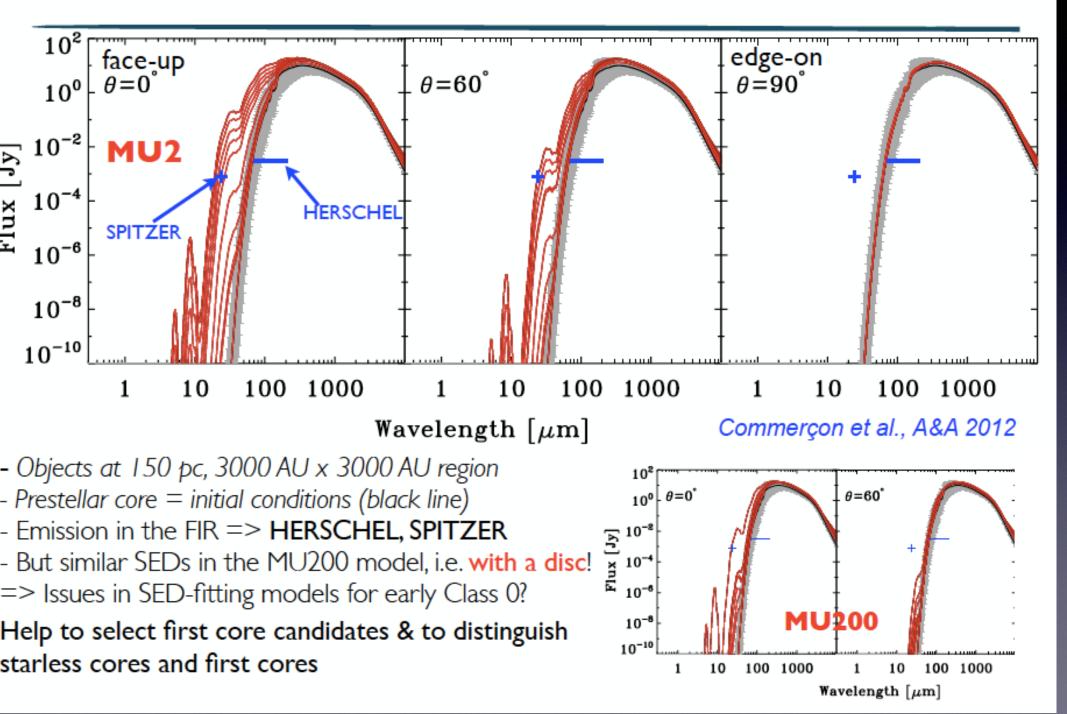
2nd collapse

additional heating from magnetic diffusion

2nd collapse



Vaytet et al (in prep.)


Synthetic ALMA dust emission maps

Commerçon, Levrier et al. A&A, 2012

SED - Do we see a first core signature?

 Formation of magnetized disks is a <u>very complicated task</u> (see Li et al. 2014, PPVI review): need nonideal MHD, turbulence, rotation, outflows, chemistry... + numerical issues (diffusivity, reconnection,...)
 Calculations w/o B (or ideal MHD), accreting envelope (J), (chemistry) <u>meaningless</u> always VERY cautious/ skeptical about numerical simulations !!!

- Formation of magnetized disks is a <u>very complicated task</u> (see Li et al. 2014, PPVI review): need nonideal MHD, turbulence, rotation, outflows, chemistry... + numerical issues (diffusivity, reconnection,...)
 Calculations w/o B (or ideal MHD), accreting envelope (J), (chemistry) <u>meaningless</u> always VERY cautious/ skeptical about numerical simulations !!!
 - <u>Ambipolar Diffusion / Ohmic dissp'n</u> (1st / 2nd core) : help diffusing the flux (B< ~0.1 G)
 <u>Affects angular momentum evolution =></u> decreases B-breaking => increases rotational support
 <u>helps forming rotationally supported disks</u>
 - -Affects mass loss / accretion history : decreases pile-up of toroidal B at small scales (< 10 a.u.) => lower magnetic tower near the central objects => smaller outflows
 - T<u>urbulence</u>:
 - increases further the effect of AD (diffusivity, reconnection)
 - yields less organized structures => affects accretion history

strongly affect properties of the second core and surrounding disk

- Formation of magnetized disks is a <u>very complicated task</u> (see Li et al. 2014, PPVI review): need nonideal MHD, turbulence, rotation, outflows, chemistry... + numerical issues (diffusivity, reconnection,...)
 Calculations w/o B (or ideal MHD), accreting envelope (J), (chemistry) <u>meaningless</u> always VERY cautious/ skeptical about numerical simulations !!!
 - <u>Ambipolar Diffusion / Ohmic dissp'n</u> (1st / 2nd core) : help diffusing the flux (B< ~0.1 G)
 <u>Affects angular momentum evolution =></u> decreases B-breaking => increases rotational support => <u>helps forming rotationally supported disks</u>
 - -Affects mass loss / accretion history : decreases pile-up of toroidal B at small scales (< 10 a.u.) => lower magnetic tower near the central objects => <u>smaller outflows</u>
 - T<u>urbulence</u>:
 - increases further the effect of AD (diffusivity, reconnection)
 - yields less organized structures => affects accretion history

strongly affect properties of the second core and surrounding disk

 Magnetized disks at the Class 0 stage should exhibit weak variations (R_d ~ 20 AU ∝B^{-1/2} M ★ ^{1/3}) Self-regulation between B-braking and AD (consistent with observations (A. Maury))

- Formation of magnetized disks is a <u>very complicated task</u> (see Li et al. 2014, PPVI review): need nonideal MHD, turbulence, rotation, outflows, chemistry... + numerical issues (diffusivity, reconnection,...)
 Calculations w/o B (or ideal MHD), accreting envelope (J), (chemistry) <u>meaningless</u> always VERY cautious/ skeptical about numerical simulations !!!
 - <u>Ambipolar Diffusion / Ohmic dissp'n</u> (1st / 2nd core) : help diffusing the flux (B< ~0.1 G)
 <u>Affects angular momentum evolution</u> => decreases B-breaking => increases rotational support
 <u>helps forming rotationally supported disks</u>
 - -Affects mass loss / accretion history : decreases pile-up of toroidal B at small scales (< 10 a.u.) => lower magnetic tower near the central objects => <u>smaller outflows</u>
 - T<u>urbulence</u>:
 - increases further the effect of AD (diffusivity, reconnection)
 - yields less organized structures => affects accretion history

strongly affect properties of the second core and surrounding disk

- Magnetized disks at the Class 0 stage should exhibit weak variations (R_d ~ 20 AU _~B^{-1/2} M * ^{1/3}) Self-regulation between B-braking and AD (consistent with observations (A. Maury))
- Disks seem to regulate around Q ~ 1, expect some small early episodic bursts
 > unlikely to be the main route for BD/planet f'n by G.I. (excluded by direct imaging obs'ns) (see review/discussion in Chabrier, Johansen, Janson, Rafikov PPVI (2014)

- Formation of magnetized disks is a <u>very complicated task</u> (see Li et al. 2014, PPVI review): need nonideal MHD, turbulence, rotation, outflows, chemistry... + numerical issues (diffusivity, reconnection,...)
 Calculations w/o B (or ideal MHD), accreting envelope (J), (chemistry) <u>meaningless</u> always VERY cautious/ skeptical about numerical simulations !!!
 - <u>Ambipolar Diffusion / Ohmic dissp'n</u> (1st / 2nd core) : help diffusing the flux (B< ~0.1 G)
 <u>Affects angular momentum evolution</u> => decreases B-breaking => increases rotational support
 <u>helps forming rotationally supported disks</u>
 - -Affects mass loss / accretion history : decreases pile-up of toroidal B at small scales (< 10 a.u.) => lower magnetic tower near the central objects => <u>smaller outflows</u>
 - T<u>urbulence</u>:
 - increases further the effect of AD (diffusivity, reconnection)
 - yields less organized structures => affects accretion history

strongly affect properties of the second core and surrounding disk

- Magnetized disks at the Class 0 stage should exhibit weak variations (R_d ~ 20 AU ∝B^{-1/2} M ★ ^{1/3}) Self-regulation between B-braking and AD (consistent with observations (A. Maury))
- Disks seem to regulate around Q ~ 1, expect some small early episodic bursts
 > unlikely to be the main route for BD/planet f'n by G.I. (excluded by direct imaging obs'ns) (see review/discussion in Chabrier, Johansen, Janson, Rafikov PPVI (2014)

 Perspective: need more (good) physics + need more observations (ALMA, SCUBA2, Artemis, SPHERE, GPI,...)