Carving through the Codes: Challenges in Computational Astrophysics Davos 12-17.02.2017

CHALLENGES IN SIMULATING

COSMIC REIONIZATION

Benedetta Ciardi

Max Planck Institute for Astrophysics

Thanks to M. Eide, M. Glatzle, L. Graziani, K. Kakiichi et al.

MODELLING OF COSMIC REIONIZATION

Model of structure formation (gas distribution & source type and location)

MODEL OF STRUCTURE FORMATION

box size (several 100 cMpc) vs. resolution ($10^{8-9} M_{\odot}$)

MODELLING OF COSMIC REIONIZATION

♦ Model of structure formation (gas distribution & source type and location)

\diamond Properties of the sources of ionizing radiation

STELLAR TYPE SOURCES

 \diamond Initial Mass Function and spectrum

 \diamond Primordial (PopIII) \rightarrow standard (PopII/I) star formation

 \diamond Escape fraction

Large uncertainties associated to high-z stellar type sources

MODELLING OF COSMIC REIONIZATION

♦ Model of structure formation (gas distribution & source type and location)

\diamond Properties of the sources of ionizing radiation

 \diamond Evolution of ionized regions

EVOLUTION OF IONIZED REGIONS

Cosmological radiative transfer codes comparison I

Code (Authors)	Grid	Gasdyn.	He	Rec. rad.
CRASH (Maselli, Ferrara, BC)	Fixed	No	Yes	Yes
<mark>C2-Ray</mark> (Mellema et al)	Fixed/AMR	Yes	No	No
OTVET (Gnedin, Abel)	Fixed	No	Yes	Yes
ART (Nakamoto et al)	Fixed	No	No	Yes
RSPH (Susa, Umemura)	Particle-based	Yes	No	No
FLASH-HC (Rijkhorst et al)	Fixed/AMR	Yes	No	No
SimpleX (Ritzerveld, Icke, Rijkhorst)	Unstructured	No	No	Yes
Zeus-MP (Whalen, Norman)	Fixed	Yes	No	No
IFT (Alvarez, Shapiro)	Fixed/AMR	No	No	No
Coral (Iliev et al)	AMR	Yes	Yes	No
FTTE (Razoumov)	Fixed/AMR	Yes	Yes	yes

EVOLUTION OF IONIZED REGIONS

Cosmological radiative trai Code (Authors) Grid CRASH Fixed (Maselli, Ferrara, BC) C2-Ray Fixed/AMR (Mellema et al) OTVET Fixed (Gnedin, Abel) ART Fixed (Nakamoto et al) **RSPH** Particle-based (Susa, Umemura) FLASH-HC Fixed/AMR (Rijkhorst et al) SimpleX Unstructured (Ritzerveld, Icke, Rijkhorst) Zeus-MP Fixed (Whalen, Norman) IFT Fixed/AMR (Alvarez, Shapiro) Coral AMR (Iliev et al) FTTE Fixed/AMR (Razoumov)

lliev+ (2006)

EVOLUTION OF IONIZED REGIONS

Cosmological radiative trai

Code (Authors)	Grid	
CRASH (Maselli, Ferrara, BC)	Fixed	
<mark>C2-Ray</mark> (Mellema et al)	Fixed/AMR	
OTVET (Gnedin, Abel)	Fixed	
ART (Nakamoto et al)	Fixed	
RSPH (Susa, Umemura)	Particle-based	
FLASH-HC (Rijkhorst et al)	Fixed/AMR	
SimpleX (Ritzerveld, Icke, Rijkhorst)	Unstructured	
Zeus-MP (Whalen, Norman)	Fixed	
IFT (Alvarez, Shapiro)	Fixed/AMR	
Coral (Iliev et al)	AMR	
FTTE (Razoumov)	Fixed/AMR	

- 1. Post-processing: He, high-energy photons
- 2. Coupled: properties of galaxies

STAY TUNED!

MODELLING OF COSMIC REIONIZATION

♦ Model of structure formation (gas distribution & source type and location)

\diamond Properties of the sources of ionizing radiation

 \diamond Evolution of ionized regions

BC+ 2012; Eide+ in prep

Model of galaxy formation

MassiveBlack II (Khandai+ 2015)

L [Mpc/h com.]	Particles	Mgas [Msun/h]
533	2 x 3200 ³	5.7 x 10 ⁷
100	2 x 1792 ³	2 x 10 ⁶
35.12	2 x 512 ³	4.15 x 10 ⁶
8.78	2 x 256 ³	6.48 x 10 ⁴
4.39	2 x 256 ³	8.11 x 10 ³
2.20	2 x 256 ³	1.01 x 10 ³

Eide+ in prep

Model of galaxy formation

MassiveBlack II (Khandai+ 2015)

	L [Mpc/h com.]	Particles	Mgas [Msun/h]
	533	2 x 3200 ³	5.7 x 10 ⁷
MBII	100	2 x 1792 ³	2 x 10 ⁶
	35.12	2 x 512 ³	4.15 x 10 ⁶
	8.78	2 x 256 ³	6.48 x 10 ⁴
	4.39	2 x 256 ³	8.11 x 10 ³
	2.20	2 x 256 ³	1.01 x 10 ³

Eide+ in prep

Model of galaxy formation

MassiveBlack II (Khandai+ 2015)

Properties of the sources of ionizing radiation

Stars, QSOs, XRBs, ISM

Eide+ in prep

Model of galaxy formation

MassiveBlack II (Khandai+ 2015)

Properties of the sources of ionizing radiation

Stars, QSOs, XRBs, ISM

Radiative transfer of ionizing photons

CRASH

BC+ 2001; Maselli, Ferrara, BC 2003; Maselli, BC, Kanekar 2009; Pierleoni, Maselli, BC 2009; Partl+ 2011; Graziani, Maselli, BC 2013; Hariharan+ 2017; Graziani, BC, Ferrara in prep; Glatzle, Graziani, BC in prep

UV, x-rays, Lyα photons in H, He, metals, dust radiation from recombination, background

RADIATIVE TRANSFER OF IONIZING PHOTONS

Eide+ in prep

- 127 frequency bins in 13.6eV-2keV

Frequency resolution is important!

RADIATIVE TRANSFER OF IONIZING PHOTONS

- Secondary ionization from Dalgarno+

Results mildly affected by secondary model

1 10-1 Ξ 10⁻² Dalgarno et al. (1999) Valdes & Ferrara (2008) 10-3 Shull & van Steenberg (1985) 10-1 Hell 10⁻² 10⁻³ 1 10-1 HeIII 10-2 Graziani, BC, 10-3 4.5 log T [K] 4 Ferrara 2017 3.5 3 2.5 3.5 0.5 2.5 1.5 3 1 2 4 d [Mpc]

Eide+ in prep

RADIATIVE TRANSFER OF IONIZING PHOTONS

Eide+ in prep

- 127 frequency bins in 13.6eV-2keV
- Secondary ionization from Dalgarno+
- Escape fraction of UV photons 5%-20%
- Number of photon packets per source 1d3-1d6

Eide+ in prep

Model of galaxy formation

MassiveBlack II (Khandai+ 2015)

Properties of the sources of ionizing radiation

Stars, QSOs, XRBs, ISM

Radiative transfer of ionizing photons

CRASH

BC+ 2001; Maselli, Ferrara, BC 2003; Maselli, BC, Kanekar 2009; Pierleoni, Maselli, BC 2009; Partl+ 2011; Graziani, Maselli, BC 2013; Hariharan+ 2017; Graziani, BC, Ferrara sub; Glatzle, Graziani, BC in prep

QUALITATIVE ESTIMATES

AVERAGE QUANTITIES

CONCLUSIONS

 \diamond Physics rich simulations of structure formation with large boxes and high resolution

 \diamond Better understanding of source properties

 \diamond Accurate radiative transfer