
The DISPATCH Code Framework

Davos, February 2017

Åke Nordlund, Jon Ramsey, Michael Küffmeier & Andrius Popovas

Niels Bohr Institute / STARPLAN, University of Copenhagen

OOP, Zeus solver,

curvi-linear mesh, …
non-ideal MHD

ray-based

radiative transfer

DISPATCH: Exa-scale features with immediate benefits

 Basic concepts and ideas

• Moving patches

• Local time steps

• Task based scheduling

 Object hierarchy

• Patches, solvers, experiments

• Scenes, components

 Code components

• OpenMP tasks, local neighborhood MPI, load balancing

 Application examples

• Supersonic turbulence, solar active regions, chondrule accretion

 Exascale  simulating huge systems !

o Pointless to apply millions of cores to a single,

relatively simple system

o Unavoidably: many semi-autonomous

hierarchical regions of space

 GMCs, MCs, accretion disks, planets, …

 This point of view has decisive implications

for the choice of mechanisms in the code

o A distant GMC has very few properties of interest

to a local GMC: Essentially only its mass,

position and light output

o For the same reason: Solving the Poisson

equation does NOT imply a need for exact

synchronism across huge scale ranges

Archetype Problem: Inspiring the right mind set & choices

Imagine: a full galaxy simulation, down to individual star and planet formation

The DISPATCH name

The keys to the scaling properties are encoded in the name:

❑ Using a DISPATCHer to spawn semi-independent OpenMP processes, which
are not forced to be locked together in time, nor are they forced to exist in
grid-locked arrangement in space!

❑ The result is a number of DISconnected PATCHes, each of which has its own
“task” definition, which is responsible for its evolution. Patches interact via

1. Downloading of guard zone data from
neighboring patches

2. Uploading of interior data, from patches
that have higher quality data

3. Retaining several time slices for
interpolation in time

DISPATCH breaks with traditions, to achieve ~unlimited scaling:

 Allow asynchronous evolution of sub-domains (patches)

 Allow moving patches – small Cartesian meshes with bulk motion

 Allow local time steps; determined independently for each patch

 Use task-based scheduling, via OpenMP inside nodes

 Use neighborhood-limited MPI between nodes

 Use any preferred solver inside patches, balancing
speed against quality and guard zone requirements

o Can include Multiple-Domain-Multiple-Physics

 e.g. PIC codes for kinetic simulations inside MHD

 dust+gas dynamics

 …

NBI / STARPLAN

Task based OpenMP on each node

Object task hierarchy, task_lists, components, scenes

Task hierarchy: basic “task”

type, public:: task_t
integer:: id, status, …
real(8), pointer:: position(:,:)
real(8), pointer:: t(:), dt(:)
integer, pointer:: iit(:)
...

contains
procedure:: init
procedure:: update
...

end type

Basic “list”: triply linked list

type, public:: link_t
type(link_t), pointer:: next, prev
type(link_t), pointer:: next_time
type(link_t), pointer:: nbor
class(task_t), pointer:: task
...

end type

type, public:: list_t
type(link_t), pointer:: head, tail
type(link_t), pointer:: queue
...

contains
procedure:: append
procedure:: remove
procedure:: add_nbors
procedure:: queue_by_time
...

end type

Object task hierarchy, task_lists, components, scenes

Task hierarchy: basic “task”

type, public:: task_t
integer:: id, status, …
real(8), pointer:: position(:,:)
real(8), pointer:: t(:), dt(:)
integer, pointer:: iit(:)
...

contains
procedure:: init
procedure:: update
...

end type

Basic “list”: triply linked list

type, public:: link_t
type(link_t), pointer:: next, prev
type(link_t), pointer:: next_time
type(link_t), pointer:: nbor
class(task_t), pointer:: task
...

end type

type, public:: list_t
type(link_t), pointer:: head, tail
type(link_t), pointer:: queue
...

contains
procedure:: append
procedure:: remove
procedure:: add_nbors
procedure:: queue_by_time
...

end type

“patch” adds mesh, memory, …

type, public, extends(task_t):: patch_t
class(mesh_t), pointer:: mesh
real, dimension(:,:,:,:,:,:), pointer:: mem
...

contains
procedure:: init
procedure:: update
...

end type

“solver” adds specific method + params

type, public, extends(patch_t):: mhd_t
real:: courant_number
type(timestep_t):: timestep
...

contains
procedure:: init
procedure:: update
...

end type

“task_list”: heart of dispatcher

type, public, extends(list_t):: task_list
...

contains
procedure:: execute
procedure:: update
...

end type

SUBROUTINE execute (self)
class(task_list_t):: self
...
!$omp parallel
do while (self%n > 0)

call self%update
end do
!$omp end parallel

END SUBROUTINE

Object task hierarchy, task_lists, components, scenes

Task hierarchy: basic “task”

type, public:: task_t
integer:: id, status, …
real(8), pointer:: position(:,:)
real(8), pointer:: t(:), dt(:)
integer, pointer:: iit(:)
...

contains
procedure:: init
procedure:: update
...

end type

Basic “list”: triply linked list

type, public:: link_t
type(link_t), pointer:: next, prev
type(link_t), pointer:: next_time
type(link_t), pointer:: nbor
class(task_t), pointer:: task
...

end type

type, public:: list_t
type(link_t), pointer:: head, tail
type(link_t), pointer:: queue
...

contains
procedure:: append
procedure:: remove
procedure:: add_nbors
procedure:: queue_by_time
...

end type

“patch” adds mesh, memory, …

type, public, extends(task_t):: patch_t
class(mesh_t), pointer:: mesh
real, dimension(:,:,:,:,:,:), pointer:: mem
...

contains
procedure:: init
procedure:: update
...

end type

“solver” adds specific method + params

type, public, extends(patch_t):: mhd_t
real:: courant_number
type(timestep_t):: timestep
...

contains
procedure:: init
procedure:: update
...

end type

“experiment” adds specific IC, BC,

type, public, extends(patch_t):: experiment_t
...

contains
procedure:: init
procedure:: update

end type

SUBROUTINE init (self)
USE initial_mod
call self%patch_t%init
call initial_t%init
...

END SUBROUTINE init

“task_list”: heart of dispatcher

type, public, extends(list_t):: task_list
...

contains
procedure:: execute
procedure:: update
...

end type

SUBROUTINE execute (self)
class(task_list_t):: self
...
!$omp parallel
do while (self%n > 0)

call self%update
end do
!$omp end parallel

END SUBROUTINE

“cartesian”: builds task list

type, public:: cartesian_t
type(task_list_t):: task_list
real(8):: size(3)
integer:: dims(3)

contains
procedure:: init
...

end type

SUBROUTINE init (self)
class(cartesian_t):: self
...
do iz=1,dims(3)
do iy=1,dims(2)
do ix=1,dims(1)
allocate (task)
call task%init
...
call self%task_list%append(task)

end do
end do
end do

END SUBROUTINE

“scenes, components”:
USE galaxy
USE gmc
USE accretion_disk
USE star
USE planet

SUBROUTINE init (self)
class(scene_t):: self
...
call galaxy%init
self%task_list => galaxy%task_list
do i=1,galaxy%n_gmc
call gmc%init
self%task_list%append_list%gmc%task_list

end do
...

END SUBROUTINE

Interior, Boundary, and Virtual patches

V V V V V V

V B B B B V

V B I I B V

V B I I B V

V B B B B V

V V V V V V

A boundary patch on one rank

is a virtual patch on another

rank, and conversely

For simplicity, virtual patches are COMPLETE copies

of boundary patches, even if only guard cells are

needed – simplifies load balancing

Send buffers to virtual patch owners:

call copy_to_buffer (patch, mesg%buffer)
...
nbor => link%nbor
do while (associated(nbor))

rank = nbor%task%rank
if (rank /= done) then

call MPI_ISEND (mesg%buffer, nwords, MPI_REAL, rank, …)
call add_mesg (send_list, mesg)
done => rank

end if
nbor => nbor%next

end do

Sender & receiver side MPI

Send buffers to virtual patch owners:

call copy_to_buffer (patch, mesg%buffer)
...
nbor => link%nbor
do while (associated(nbor))

rank = nbor%task%rank
if (rank /= done) then

call MPI_ISEND (mesg%buffer, nwords, MPI_REAL, rank, …)
call add_mesg (send_list, mesg)
done => rank

end if
nbor => nbor%next

end do

Sender & receiver side MPI

Gather incoming messages into a recv_list:

call MPI_IMPROBE (MPI_ANY_SOURCE, MPI_ANY_TAG, flag, msg, …)
do while (flag)

call MPI_GET_COUNT (stat, MPI_REAL, nbuf, ierr)
allocate (mesg)
...
call MPI_IMRECV (mesg%buffer, nbuf, MPI_REAL, msg, req, …)
...
call add_mesg (recv_list, mesg)
call MPI_IMPROBE (MPI_ANY_SOURCE, MPI_ANY_TAG, flag, msg, …)

end do

900 tasks, randomly

distributed on 5 ranks (colors)

The Python animation shows the result of
simultaneously running:

❑ 1st procedure reducing communications

o Interchanging “boundary” and “virtual” roles

o temporarily introduces a small imbalance

❑ 2nd procedure evens out the load, while
avoiding to increase communications

o Operates independent of the 1st procedure

o Uses only local information

o Swap “boundary” and “virtual” roles

o Both procedures are entirely local,
requiring no global information

Load & communication balance

900 tasks, randomly

distributed on 5 ranks (colors)

The Python animation shows the result of
simultaneously running:

❑ 1st procedure reducing communications

o Interchanging “boundary” and “virtual” roles

o temporarily introduces a small imbalance

❑ 2nd procedure evens out the load, while
avoiding to increase communications

o Operates independent of the 1st procedure

o Uses only local information

o Swap “boundary” and “virtual” roles

o Both procedures are entirely local,
requiring no global information

Load & communication balance

Recent developments

 Ray-tracing radiative energy transfer is working

o Several task structures are being explored

o Total cost when along axes & diags ~10
ns/pt/angle/opacity-bin

 Prototype coupling to external code runs

o One file on DISPATCH side, one file on external
code side, one interface file

o Aim: to be used e.g. with BIFROST (solar
chromosphere + corona) and PIC code

o Time step advantage: factor 30-100 (!)

 OpenMP optimized:

o Removing all critical regions using ‘dispatcher’

Scaling tests on KNL and Hazel Hen / HLRS

 Using single-node KNL at UCPH:

 flat mode: 0.98 s/pt flat

 4-corner mode: 1.05 s/pt flat

 MPI scaling tested at HLRS

 Hazel Hen (CRAY XC40)

 Haswell nodes (2x12 cores)

 256 nodes x 4 ranks / node

16

Example 1: Decaying supersonic HD-turbulence

This is one of the benchmarks from the
KITP code comparison (Kritsuk et al, 2011)

 Pure HD – no magnetic field

 Initial RMS Mach number: ~10

 Resolution: 2563

 To be run from t=0.02 to t=0.20

We did this, all using RAMSES/HLLC, in the
Chicago/Copenhagen/Zuric collaboration,

using (mini-)RAMSES, ART, and DISPATCH

Projected density (square root)

t=0.02 (initial)Projected density (square root)

t=0.20 (final)

mini-RAMSES

ART

DISPATCH

Most of the speed difference is due to raw

speed (vectorization, cache), less than a

factor 2 from local time steps in 323 patches

Example 2: Solar active regions

This is a unigrid example, with 2016 x 500 x 2016 grid
point – to be expanded into the chromosphere and
corona with up to 4032 x 1000 x 4032 grid points.

The fast mode speed is extremely intermittent in solar
active regions, and hence the update cost is
concentrated to a few spots horizontally, and there the
update cost is large only at the very surface.

Hence a very large cost reduction can be achieved with
local time steps ; in the cases shown here, the local time
step advantages is in the range 30-100, depending on
the size of sunspots.

[This has previously been handled to some extent by
artificially & inconsistently limiting the fast mode speed]

Example 2: Solar active regions

This is a unigrid example, with 2016 x 500 x 2016 grid
point – to be expanded into the chromosphere and
corona with up to 4032 x 1000 x 4032 grid points.

The fast mode speed is extremely intermittent in solar
active regions, and hence the update cost is
concentrated to a few spots horizontally, and there the
update cost is large only at the very surface.

Hence a very large cost reduction can be achieved with
local time steps ; in the cases shown here, the local time
step advantages is in the range 30-100, depending on
the size of sunspots.

[This has previously been handled to some extent by
artificially & inconsistently limiting the fast mode speed]

Example 2: Solar active regions

This is a unigrid example, with 2016 x 500 x 2016 grid
point – to be expanded into the chromosphere and
corona with up to 4032 x 1000 x 4032 grid points.

The fast mode speed is extremely intermittent in solar
active regions, and hence the update cost is
concentrated to a few spots horizontally, and there the
update cost is large only at the very surface.

Hence a very large cost reduction can be achieved with
local time steps ; in the cases shown here, the local time
step advantages is in the range 30-100, depending on
the size of sunspots.

[This has previously been handled to some extent by
artificially & inconsistently limiting the fast mode speed]

Cost factor: Top view

Example 2: Solar active regions

This is a unigrid example, with 2016 x 500 x 2016 grid
point – to be expanded into the chromosphere and
corona with up to 4032 x 1000 x 4032 grid points.

The fast mode speed is extremely intermittent in solar
active regions, and hence the update cost is
concentrated to a few spots horizontally, and there the
update cost is large only at the very surface.

Hence a very large cost reduction can be achieved with
local time steps ; in the cases shown here, the local time
step advantages is in the range 30-100, depending on
the size of sunspots.

[This has previously been handled to some extent by
artificially & inconsistently limiting the fast mode speed]

Cost factor: Top viewCost factor: Side view

This small region near the top has

exceedingly high update cost …

Example 3: Accretion disks and chondrule accretion

For two separate reasons the local time
step advantage is large also in accretion
disks:

1. Low density in magnetically
dominated regions (e.g. jets) give
large fast mode speeds

2. Kepler motions in disks are
supersonic when seen from fixed
mesh; cf. FARGO method DISPATCH can read RAMSES snapshots,

merging neighboring octs into larger patches

For details on zoom-in simulations, cf.

Küffmeier et al, arXiv 1611,10360

Example 3: Accretion disks and chondrule accretion

For two separate reasons the local time
step advantage is large also in accretion
disks:

1. Low density in magnetically
dominated regions (e.g. jets) give
large fast mode speeds

2. Kepler motions in disks are
supersonic when seen from fixed
mesh; cf. FARGO method

DISPATCH can read RAMSES snapshots,

merging neighboring octs into larger patches

Concrete example: Local time step advantage

~factor 10, with moving patches ~factor 30

For details on zoom-in simulations, cf.

Küffmeier et al, arXiv 1611,10360

Gas + dust dynamics

Pressure traps

Pinilla, Birnstiel, & Walsh (2015)

log 𝜌

log R

Inward pressure gradient => faster than Kepler

Outward pressure gradient => slower than Kepler

speed difference =>

drag force => drift toward

pressure max => trap

Modeling global disks and pebble accretion with DISPATCH

Set up analogous to the de Val-Borro et al. (2004) benchmark:

To be connected to “pebble atmosphere”: pebble accretion through a hydrostatic atmosphere

1 MJ 1 ME

Jupiter size planet

Here’s the standard case, with
a Jupiter size planet, evolved
with the new DISPATCH code
framework.

Resolution: 384 x 128

Core-time: a few hours

Near-planet dynamics: Horse-shoe orbits

Image credit:

Wikipedia

Kepler rotation speed is faster inside, slower outside.

The slower outside flow is deflected towards the

planet, but inward motion => acceleration in the

direction of rotation, and it ends up in the faster inside

stream.

When the slower flow approaches, the opposite thing

happens; the pull of the planet => outward deflection

=> deceleration => ends up in the slower outside

flow.

Janus and Epimetheus are a good “local” example of

horseshoe orbits.

Near-planet dynamics: Opens up for particle accretion

Ormel (2013)

Near-planet dynamics: Three-dimensional structure

L1 and L2 are points in the midplane where the radial force vanishes:
radial-force = pull-of-planet + pull-of-Sun + centripetal force = 0

But vertically:
vertical-force = pull-of-planet + pull-of-Sun

with both pulling towards the planet in the midplane!
fundamental asymmetry => systematic flows

Inflow in polar regions, outflows in equatorial regions, pebbles can `drop out'

Ormel, Shi, & Kuiper (2014)

Rubik’s Cube Hierarchies

Aim: study the accretion of chondrules onto planet embryos:

❑ Patch hierarchy

o Co-moving with Keplerian motion

o Resolving from 0.03-4000 REarth in 7 levels

o With pseudo-atmospheres represented by
hierarchical meshes:

▪Rubics Cube (3x3x3 = 27 patches – refining the
innermost one recursively by factor 3)

▪Using an efficient acceleration mechanism;
allows relaxing ~1 orbit of evolution in ~ 2 core-days

We model an entire annulus, with a vertical size ~ disk scale height, using
a number of quasi-cubical volume strung together around the disk, with
one (or more) of the volumes containing a hierarchy of 3x3x3 subvolumes
(Rubik’s cubes), down to where the central cube contains the planet embryo.

Pebble accretion onto embryo with proto-atmosphere

NBI / STARPLAN

We model an entire annulus, with a vertical size ~ disk scale height, using
a number of quasi-cubical volume strung together around the disk, with
one (or more) of the volumes containing a hierarchy of 3x3x3 subvolumes
(Rubik’s cubes), down to where the central cube contains the planet embryo.

Pebble accretion onto embryo with proto-atmosphere

NBI / STARPLAN

The chondrule accretion rate depends on number of factors that we can
extract from our simulations, such as the production rate, the typical flow
paths, the fate of chondrules “raining down” at large radii, etc.

We aim to build a plausible planet formation scenario, which both depends
on and influences the transport of chondrules in the disk(s).

Summary, DISPATCH code framework (cf. arXiv later this week)

 Object orientation allows:

 Multiple-physics + construction of hierarchical scenes = coupled simulations

 Modular built-in solvers: HLLC, HLLD, Zeus, Stagger, …

 Simple coupling to external solvers: PIC, Bifrost, …

 Large gains in computing time arising from

 Vectorization and cache efficiency  1 core-s/cell-update on KNL

 Local time steps  factor 5-50 speed-up in realistic cases

 Moving mesh  additional speed-up, especially in disks

 Task based OpenMP scheduling  flat KNL performance per core

 Nearest neighbor MPI communication  in principle unlimited scaling

33

Summary, specific example cases

 Decaying turbulence (KITP benchmark, RAMSES/HLLC)

o Cost reduction from optimal patch size (~factor 3)

o Cost reduction from local time steps (~factor 1.5)

 Solar and stellar active regions (unigrid)

o Cost reductions from local time stepping (~factor 30-100)

o Cost reduction from reduced cadence radiative transfer

 Zoom-in simulations of star and planet formation (AMR, FMR)

o Large cost reduction (~factor 100) from optimal patch size

o Additional cost reduction (~factor 10) from local time steps

o FARGO-type cost reduction (~factor 3) from moving mesh

34

