Orianne Roos - December 4, 2015 AGN and stellar feedback in high-resolution galaxy simulations: how do they affect star formation? With high-resolution simulations of star-forming disk galaxies at high redshift, we study the effects of combined AGN and stellar feedback models on the gas of the host-galaxy. AGN feedback is modeled using a standard thermal recipe of feedback (gas is heated and pushed away) plus a post-processing method to compute AGN ionization. We first consider AGN feedback only and show that, even though the AGN generates powerful outflows, the effects of AGN feedback on star formation is relatively weak on time-scales up to a few 100s of Myrs, even when long-range radiative feedback is accounted for. Furthermore, as the combination of stellar feedback models generates outflows that are more powerful than the sum of the models taken separately, we check whether combined AGN and stellar feedback also couple non-linearly. We then include several stellar feedback sources on top of AGN feedback, such as young stars creating HII regions through radiative pressure and supernovae releasing thermal and kinetic energy in the ISM. We follow their impact on the gas of high-resolution (1.5 pc) simulations and study the coupling between the different sources of outflows (AGN, young stars, supernovae), which could produce very fast outflows, with important outflow rates. How do these feedback-driven winds affect the host? What is the amount of expelled gas? What is its density and temperature and what is the consequence for in place and future star formation? Can such outflows change the distribution of existing stars?